Skip to main content
Log in

Heparins modulate the IFN-γ-induced production of chemokines in human breast cancer cells

Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Heparins seem to improve survival in patients with advanced malignancies independently of their anticoagulatory function. As the treatment options in advanced and metastatic breast cancer are still very limited, heparins might be an interesting addition to the existing systemic therapies. The interferon (IFN)-γ-inducible chemokines CXCL9 and CXCL10 play an essential role in the regulation of the immune milieu in malignant tumours, thereby being interesting targets for an immunological intervention. We therefore wanted to test whether heparins have an impact on the chemokines CXCL9 and CXCL10 as well as the IFN-γ signalling in human breast cancer cells in vitro. The well-established cell lines BT-474, MCF-7, SK-BR-3 and MDA-MB-231 were incubated with IFN-γ, unfractionated heparin (UFH), different low molecular weight heparins (LMWHs) and the heparin-related polyanions danaparoid and dextran sulphate. The production of CXCL9 and CXCL10 was measured by ELISA and real-time RT-PCR, the phosphorylation of signal transducer and activator of transcription (STAT) 1 was detected by an in-cell western assay and the amount of cellular bound IFN-γ was analysed by a high sensitivity ELISA. We observed that IFN-γ induced CXCL9 and CXCL10 production in MCF-7, SK-BR-3 and MDA-MB-231 cells but not in BT-474. UFH dose dependently inhibited the effect of IFN-γ on the secretion and expression of CXCL9 and CXCL10. LMWHs and heparin-related compounds differentially modulated IFN-γ-effects—the results depended on their molecular size and charge, but were independent of their anticoagulatory properties. As a reason for these heparin effects, we could show that the IFN-γ-induced phosphorylation of STAT1 was modulated by heparins, caused by an interaction with the cellular binding of IFN-γ. In conclusion, these results support the significance of the immunomodulatory properties of heparins independently of their classical anticoagulatory function. Heparin-derived sulphated polysaccharides with distinct molecular properties might thus be interesting candidates for new therapeutic strategies in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

CD:

Cluster of differentiation

cDNA:

Complementary deoxyribonucleic acid

ELISA:

Enzyme-linked immunosorbent assay

ER:

Oestrogen-receptor

FXa:

Factor Xa

GAG:

Glycosaminoglycan

Her-2:

Human epidermal growth factor receptor-2

HS:

Heparan sulphate

IFN-γ:

Interferon-γ

Jak:

Janus kinase

LMWH:

Low molecular weight heparin

NK:

Natural killer

PR:

Progesterone-receptor

RNA:

Ribonucleic acid

RT-PCR:

Reverse transcriptase polymerase chain reaction

STAT1:

Signal transducer and activator of transcription 1

Th1:

T helper cells type 1

UFH:

Unfractionated heparin

VTE:

Venous thromboembolism

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  2. Linhardt RJ, Rice KG, Kim YS, Lohse DL, Wang HM, Loganathan D (1988) Mapping and quantification of the major oligosaccharide components of heparin. Biochem J 254:781–787

    PubMed  CAS  Google Scholar 

  3. Linhardt RJ, Ampofo SA, Fareed J, Hoppensteadt D, Mulliken JB, Folkman J (1992) Isolation and characterization of human heparin. Biochemistry 31:12441–12445

    Article  PubMed  CAS  Google Scholar 

  4. Shriver Z, Sundaram M, Venkataraman G et al (2000) Cleavage of the antithrombin III binding site in heparin by heparinases and its implication in the generation of low molecular weight heparin. Proc Natl Acad Sci USA 97:10365–10370

    Article  PubMed  CAS  Google Scholar 

  5. Kakkar AK, Levine MN, Kadziola Z et al (2004) Low molecular weight heparin, therapy with dalteparin, and survival in advanced cancer: the fragmin advanced malignancy outcome study (FAMOUS). J Clin Oncol 22:1944–1948

    Article  PubMed  CAS  Google Scholar 

  6. Klerk CP, Smorenburg SM, Otten HM et al (2005) The effect of low molecular weight heparin on survival in patients with advanced malignancy. J Clin Oncol 23:2130–2135

    Article  PubMed  CAS  Google Scholar 

  7. Altinbas M, Coskun HS, Er O et al (2004) A randomized clinical trial of combination chemotherapy with and without low-molecular-weight heparin in small cell lung cancer. J Thromb Haemost 2:1266–1271

    Article  PubMed  CAS  Google Scholar 

  8. Engelberg H (1999) Actions of heparin that may affect the malignant process. Cancer 85:257–272

    Article  PubMed  CAS  Google Scholar 

  9. Mousa SA, Petersen LJ (2009) Anti-cancer properties of low-molecular-weight heparin: preclinical evidence. Thromb Haemost 102:258–267

    PubMed  CAS  Google Scholar 

  10. Castelli R, Porro F, Tarsia P (2004) The heparins and cancer: review of clinical trials and biological properties. Vasc Med 9:205–213

    Article  PubMed  Google Scholar 

  11. Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163–189

    Article  PubMed  CAS  Google Scholar 

  12. Bach EA, Aguet M, Schreiber RD (1997) The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol 15:563–591

    Article  PubMed  CAS  Google Scholar 

  13. Groom JR, Luster AD (2011) CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol 89:207–215

    Article  PubMed  CAS  Google Scholar 

  14. Wendel M, Galani IE, Suri-Payer E, Cerwenka A (2008) Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Res 68:8437–8445

    Article  PubMed  CAS  Google Scholar 

  15. Cozar JM, Canton J, Tallada M et al (2005) Analysis of NK cells and chemokine receptors in tumor infiltrating CD4 T lymphocytes in human renal carcinomas. Cancer Immunol Immunother 54:858–866

    Article  PubMed  CAS  Google Scholar 

  16. Denkert C, Loibl S, Noske A et al (2010) Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 28:105–113

    Article  PubMed  CAS  Google Scholar 

  17. Kondo T, Ito F, Nakazawa H, Horita S, Osaka Y, Toma H (2004) High expression of chemokine gene as a favorable prognostic factor in renal cell carcinoma. J Urol 171:2171–2175

    Article  PubMed  CAS  Google Scholar 

  18. Ohtani H, Jin Z, Takegawa S, Nakayama T, Yoshie O (2009) Abundant expression of CXCL9 (MIG) by stromal cells that include dendritic cells and accumulation of CXCR3+T cells in lymphocyte-rich gastric carcinoma. J Pathol 217:21–31

    Article  PubMed  CAS  Google Scholar 

  19. Specht K, Harbeck N, Smida J et al (2009) Expression profiling identifies genes that predict recurrence of breast cancer after adjuvant CMF-based chemotherapy. Breast Cancer Res Treat 118:45–56

    Article  PubMed  CAS  Google Scholar 

  20. Fluhr H, Carli S, Deperschmidt M, Wallwiener D, Zygmunt M, Licht P (2007) Differential effects of human chorionic gonadotropin and decidualization on insulin-like growth factors-I and -II in human endometrial stromal cells. Fertil Steril 90(4 Suppl):1384–1389

    PubMed  Google Scholar 

  21. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  22. Gorbachev AV, Kobayashi H, Kudo D et al (2007) CXC chemokine ligand 9/monokine induced by IFN-gamma production by tumor cells is critical for T cell-mediated suppression of cutaneous tumors. J Immunol 178:2278–2286

    PubMed  CAS  Google Scholar 

  23. Kajitani K, Tanaka Y, Arihiro K, Kataoka T, Ohdan H (2012) Mechanistic analysis of the antitumor efficacy of human natural killer cells against breast cancer cells. Breast Cancer Res Treat 134(1):139–155

    Article  PubMed  Google Scholar 

  24. Arenberg DA, Kunkel SL, Polverini PJ et al (1996) Interferon-gamma-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J Exp Med 184:981–992

    Article  PubMed  CAS  Google Scholar 

  25. Sgadari C, Farber JM, Angiolillo AL et al (1997) Mig, the monokine induced by interferon-gamma, promotes tumor necrosis in vivo. Blood 89:2635–2643

    PubMed  CAS  Google Scholar 

  26. Hatakeyama M, Imaizumi T, Tamo W et al (2004) Heparin inhibits IFN-gamma-induced fractalkine/CX3CL1 expression in human endothelial cells. Inflammation 28:7–13

    Article  PubMed  CAS  Google Scholar 

  27. Douglas MS, Rix DA, Dark JH, Talbot D, Kirby JA (1997) Examination of the mechanism by which heparin antagonizes activation of a model endothelium by interferon-gamma (IFN-gamma). Clin Exp Immunol 107:578–584

    Article  PubMed  CAS  Google Scholar 

  28. Douglas MS, Ali S, Rix DA, Zhang JG, Kirby JA (1997) Endothelial production of MCP-1: modulation by heparin and consequences for mononuclear cell activation. Immunology 92:512–518

    Article  PubMed  CAS  Google Scholar 

  29. Greinacher A, Michels I, Mueller-Eckhardt C (1992) Heparin-associated thrombocytopenia: the antibody is not heparin specific. Thromb Haemost 67:545–549

    PubMed  CAS  Google Scholar 

  30. Bergqvist D, Caprini JA, Dotsenko O, Kakkar AK, Mishra RG, Wakefield TW (2007) Venous thromboembolism and cancer. Curr Probl Surg 44:157–216

    Article  PubMed  Google Scholar 

  31. Lyman GH, Khorana AA, Falanga A et al (2007) American Society of Clinical Oncology guideline: recommendations for venous thromboembolism prophylaxis and treatment in patients with cancer. J Clin Oncol 25:5490–5505

    Article  PubMed  CAS  Google Scholar 

  32. Lee AY, Levine MN, Baker RI et al (2003) Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med 349:146–153

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Stephanie Heidrich, Department of Obstetrics and Gynecology, University of Greifswald, Germany, for excellent technical assistance.

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Fluhr.

Additional information

Herbert Fluhr and Tina Seitz contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fluhr, H., Seitz, T. & Zygmunt, M. Heparins modulate the IFN-γ-induced production of chemokines in human breast cancer cells. Breast Cancer Res Treat 137, 109–118 (2013). https://doi.org/10.1007/s10549-012-2334-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2334-8

Keywords

Navigation