Skip to main content

Advertisement

Log in

Lack of expression of the proteins GMPR2 and PPARα are associated with the basal phenotype and patient outcome in breast cancer

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Basal-like tumours (BP) are a poor prognostic class of breast cancer but remain a biologically and clinically heterogeneous group. We have previously identified two novel genes PPARα (positive) and GMPR2 (negative) whose expression was significantly associated with BP at the transcriptome level. In this study, using a large and well-characterised series of operable invasive breast carcinomas (1,043 cases) prepared as TMAs, we assessed these targets at the protein level using immunohistochemistry and investigated associations with clinicopathological variables and patient outcome. Results: Lack of PPARα and GMPR2 protein expression was associated with BP, as defined by the expression of cytokeratin (CK) 5/6 and/or CK14, (p = 0.023, p = 0.001, respectively) or as triple-negative (ER-, PR-, HER2-) phenotype (p < 0.001 for both proteins). Positive expression of both markers was associated ER and PR positive status (p < 0.05) and with the good Nottingham Prognostic Index group (p = 0.012, p < 0.001, respectively). Univariate survival analysis showed an association between lack of expression of PPARα and GMPR2 and poor outcome in terms of shorter disease-free survival and shorter breastcancer-specific survival, respectively. However, multivariate analysis showed that these associations were not independent of other prognostic variables, namely tumour size, grade, and nodal stage. In conclusion, this study demonstrates that loss of expression of GMPR2 and PPARα is associated with BP at the protein level; indicating that they may play a role in carcinogenesis of this molecularly complex and clinically important subtype. Further studies into their relevance in further classification of BP are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Haybittle JL, Blamey RW, Elston CW, Johnson J, Doyle PJ, Campbell FC, Nicholson RI, Griffiths K (1982) A prognostic index in primary breast cancer. Br J Cancer 45:361–366

    Article  PubMed  CAS  Google Scholar 

  2. Galea MH, Blamey RW, Elston CE, Ellis IO (1992) The Nottingham prognostic index in primary breast-cancer. Breast Cancer Res Treat 22:207–219

    Article  PubMed  CAS  Google Scholar 

  3. Blamey RW, Ellis IO, Pinder SE, Lee AHS, Macmillan RD, Morgan DAL, Robertson JFR, Mitchell MJ, Ball GR, Haybittle JL, Elston CW (2007) Survival of invasive breast cancer according to the Nottingham prognostic index in cases diagnosed in 1990–1999. Eur J Cancer 43:1548–1555

    Article  PubMed  CAS  Google Scholar 

  4. Alizadeh AA, Ross DT, Perou CM, van de Rijn M (2001) Towards a novel classification of human malignancies based on gene expression patterns. J Pathol 195:41–52

    Article  PubMed  CAS  Google Scholar 

  5. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  6. Sorlie T, Perou CM Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB van de Rijn M, Jeffrey SS Thorsen T, Quist H, Matese JC, Brown PO Botstein D, Eystein Lonning P, and Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98, 10869–10874

    Google Scholar 

  7. Rakha EA, El-Rehim DA, Paish C, Green AR, Lee AHS, Robertson JF, Blamey RW, Macmillan D, Ellis IO (2006) Basal phenotype identifies a poor prognostic subgroup of breast cancer of clinical importance. Eur J Cancer 42:3149–3156

    Article  PubMed  CAS  Google Scholar 

  8. van de Rijn M, Perou CM, Tibshirani R, Haas P, Kallioniemi O, Kononen J, Torhorst J, Sauter G, Zuber M, Kochli OR, Mross F, Dieterich H, Seitz R, Ross D, Botstein D, Brown P (2002) Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am J Pathol 161:1991–1996

    Article  PubMed  Google Scholar 

  9. Bankfalvi A, Ludwig A, De-Hesselle B, Buerger H, Buchwalow IB, Boecker W (2004) Different proliferative activity of the glandular and myoepithelial lineages in benign proliferative and early malignant breast diseases. Mod Pathol 17:1051–1061

    Article  PubMed  Google Scholar 

  10. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu ZY, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, Akslen LA, Ragaz J, Gown AM, Gilks CB, van de Rijn MV, Perou CM (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10:5367–5374

    Article  PubMed  CAS  Google Scholar 

  11. Wordsworth S, Buchanan J, Papanicolas I, Taylor J, Frayling I, Tomlinson I (2008) Molecular testing for somatic mutations in common cancers: the views of UK oncologists. J Clin Pathol 61:761–765

    Article  PubMed  CAS  Google Scholar 

  12. Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT, Perou CM (2006) Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 19:264–271

    Article  PubMed  CAS  Google Scholar 

  13. Rakha EA, El-Sayed ME, Green AR, Paish EC, Lee AHS, Ellis IO (2007) Breast carcinoma with basal differentiation: a proposal for pathology definition based on basal cytokeratin expression. Histopathology 50:434–438

    Article  PubMed  CAS  Google Scholar 

  14. Rakha EA, Reis-Filho JS, Ellis IO (2008) Basal-like breast cancer: a critical review. J Clin Oncol 26:2568–2581

    Article  PubMed  Google Scholar 

  15. Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, Hess KR, Stec J, Ayers M, Wagner P, Morandi P, Fan C, Rabiul I, Ross JS, Hortobagyi GN, Pusztai L (2005) Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11:5678–5685

    Article  PubMed  CAS  Google Scholar 

  16. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13:4429–4434

    Article  PubMed  Google Scholar 

  17. Mendelsohn J (2002) Targeting the epidermal growth factor receptor for cancer therapy. J Clin Oncol 20:1S–13S

    PubMed  CAS  Google Scholar 

  18. Mendelsohn J, Baselga J (2006) Epidermal growth factor receptor targeting in cancer. Semin Oncol 33:369–385

    Article  PubMed  CAS  Google Scholar 

  19. Finn RS, Dering J, Ginther C, Wilson CA, Glaspy P, Tchekmedyian N, Slamon DJ (2007) Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/”triple-negative’’ breast cancer cell lines growing in vitro. Breast Cancer Res Treat 105:319–326

    Article  PubMed  CAS  Google Scholar 

  20. Huang F, Reeves K, Han X, Fairchild C, Platero S, Wong TW, Lee F, Shaw P, Clark E (2007) Identification of candidate molecular markers predicting sensitivity in solid tumors to Dasatinib: rationale for patient selection. Cancer Res 67:2226–2238

    Article  PubMed  CAS  Google Scholar 

  21. Farmer H, McCabe N, Lord CJ, Tutt ANJ, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NMB, Jackson SP, Smith GCM, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921

    Article  PubMed  CAS  Google Scholar 

  22. Abd El-Rehim DM, Ball G, Pinder SE, Rakha E, Paish C, Robertson JF, Macmillan D, Blamey RW, and Ellis IO (2005) High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer 116, 340–350

  23. Naderi A, Teschendorff AE, Barbosa-Morais NL, Pinder SE, Green AR, Powe DG, Robertson JF, Aparicio S, Ellis IO, Brenton JD, and Caldas C (2006) A gene-expression signature to predict survival in breast cancer across independent data sets. Oncogene

  24. Chin SF, Teschendorff AE, Marioni JC, Wang Y, Barbosa-Morais NL, Thorne NP, Costa JL, Pinder SE, van de Wiel MA, Green AR, Ellis IO, Porter PL, Tavare S, Brenton JD, Ylstra B, Caldas C (2007) High-resolution array-CGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome Biol 8:R215

    Article  PubMed  Google Scholar 

  25. Zhang H, Rakha E, Ball G, Spiteri I, Aleskandarany MA, Paish C, Powe D, Macmillan D, Caldas C, Ellis I, and Green A (2009) The proteins FABP7 and OATP2 are associated with the basal phenotype and patient outcome in human breast cancer. Breast Cancer Res Treat

  26. Madjd Z, Pinder SE, Paish C, Ellis IO, Carmichael J, Durrant LG (2003) Loss of CD59 expression in breast tumours correlates with poor survival. J Pathol 200:633–639

    Article  PubMed  CAS  Google Scholar 

  27. Green AR, Burney C, Granger CJ, Paish EC, El-Sheikh S, Rakha EA, Powe DG, Macmillan RD, Ellis IO, and Stylianou E (2007) The prognostic significance of steroid receptor co-regulators in breast cancer: co-repressor NCOR2/SMRT is an independent indicator of poor outcome. Breast Cancer Res Treat

  28. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2005) Reporting recommendations for tumor marker prognostic studies. J Clin Oncol 23:9067–9072

    Article  PubMed  Google Scholar 

  29. Ball G (2007) A validated gene expression profile for detecting clinical outcome in breast cancer using artificial neural networks Artificial Neural Network Analysis of basal markers, Nottingham Trent University

  30. Issemann I, Green S (1990) Activation of a member of the steroid-hormone receptor superfamily by peroxisome proliferators. Nature 347:645–650

    Article  PubMed  CAS  Google Scholar 

  31. Suchanek KM, May FJ, Robinson JA, Lee WJ, Holman NA, Monteith GR, Roberts-Thompson SJ (2002) Peroxisome proliferator-activated receptor alpha in the human breast cancer cell lines MCF-7 and MDA-MB-231. Mol Carcinog 34:165–171

    Article  PubMed  CAS  Google Scholar 

  32. van Raalte DH, Li M, Pritchard PH, Wasan KM (2004) Peroxisome proliferator-activated receptor (PPAR)-alpha: a pharmacological target with a promising future. Pharm Res 21:1531–1538

    Article  PubMed  Google Scholar 

  33. Reddy JK, Azarnoff DL, Hignite CE (1980) Hypolipemic hepatic peroxisome proliferators form a novel class of chemical carcinogens. Nature 283:397–398

    Article  PubMed  CAS  Google Scholar 

  34. Pozzi A, Ibanez MR, Gatica AE, Yang S, Wei S, Mei S, Falck JR, Capdevila JH (2007) Peroxisomal proliferator-activated receptor-alpha-dependent inhibition of endothelial cell proliferation and tumorigenesis. J Biol Chem 282:17685–17695

    Article  PubMed  CAS  Google Scholar 

  35. Baranova A (2008) PPAR ligands as potential modifiers of breast carcinoma outcomes. PPAR Res Vol 2008:10

    Google Scholar 

  36. Fievet C, Fruchart JC, Staels B (2006) PPAR alpha and PPAR gamma dual agonists for the treatment of type 2 diabetes and the metabolic syndrome. Curr Opin Pharmacol 6:606–614

    Article  PubMed  CAS  Google Scholar 

  37. Schlotter CM, Vogt U, Bosse U, Mersch B, Wassmann K (2003) C-myc, not HER-2/neu, can predict recurrence and mortality of patients with node-negative breast cance. Breast Cancer Res 5:R30–R36

    Article  PubMed  CAS  Google Scholar 

  38. Flavell DM, Ireland H, Stephens JW, Hawe E, Acharya J, Mather H, Hurel SJ, Humphries SE (2005) Peroxisome proliferator-activated receptor alpha gene variation influences age of onset and progression of type 2 diabetes. Diabetes 54:582–586

    Article  PubMed  CAS  Google Scholar 

  39. Golembesky AK, Gammon MD, North KE, Bensen JT, Schroeder JC, Teitelbaum SL, Neugut AI, Santella RM (2008) Peroxisome proliferator-activated receptor-alpha (PPARA) genetic polymorphisms and breast cancer risk: a Long Island ancillary study. Carcinogenesis 29:1944–1949

    Article  PubMed  CAS  Google Scholar 

  40. Gimble JM, Pighetti GM, Lerner MR, Wu XY, Lightfoot SA, Brackett DJ, Darcy K, Hollingsworth AB (1998) Expression of peroxisome proliferator activated receptor mRNA in normal and tumorigenic rodent mammary glands. Biochem Biophys Res Commun 253:813–817

    Article  PubMed  CAS  Google Scholar 

  41. Teschendorff AE, Naderi A, Barbosa-Morais NL, Pinder SE, Ellis IO, Aparicio S, Brenton JD, and Caldas C (2006) A consensus prognostic gene expression classifier for ER positive breast cancer Genome Biol 7

  42. Zhang J, Zhang WP, Zou DJ, Chen GY, Wan T, Zhang MH, Cao XT (2003) Cloning and functional characterization of GMPR2, a novel human guanosine monophosphate reductase, which promotes the monocytic differentiation of HL-60 leukemia cells. J Cancer Res Clin Oncol 129:76–83

    PubMed  CAS  Google Scholar 

  43. Murano I, Tsukahara M, Kajii T, Yoshida A (1994) Mapping of the human guanosine-monophosphate reductase gene (GMPR) to chromosome 6P23 by fluorescence in-situ hybridization. Genomics 19:179–180

    Article  PubMed  CAS  Google Scholar 

  44. Li JX, Wei ZY, Zheng M, Gu X, Deng YF, Qiu R, Chen F, Ji CN, Gong WM, Xie Y, Mao YM (2006) Crystal structure of human guanosine monophosphate reductase 2 (GMPR2) in complex with GMP. J Mol Biol 355:980–988

    Article  PubMed  CAS  Google Scholar 

  45. Mager J, Magasanik B (1960) Guanosine 5’-phosphate reductase and its role in the interconversion of purine nucleotides. J Biol Chem 235:1474–1478

    PubMed  CAS  Google Scholar 

  46. Prajda N, Hata Y, Abonyi M, Singhal RL, Weber G (1993) Sequential impact of Tiazofurin and Ribavirin on the enzymatic program of the bone-marrow. Cancer Res 53:5982–5986

    PubMed  CAS  Google Scholar 

  47. Lakhani SR, Reis-Filho JS, Fulford L, Penault-Llorca F, van der Vijver M, Parry S, Bishop T, Benitez J, Rivas C, Bignon Y-J, Chang-Claude J, Hamann U, Cornelisse CJ, Devilee P, Beckmann MW, Nestle-Kramling C, Daly PA, Haites N, Varley J, Lalloo F, Evans G, Maugard C, Meijers-Heijboer H, Klijn JGM, Olah E, Gusterson BA, Pilotti S, Radice P, Scherneck S, Sobol H, Jacquemier J, Wagner T, Peto J, Stratton MR, McGuffog L, Easton DF (2005) Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 11:5175–5180

    Article  PubMed  CAS  Google Scholar 

  48. Rakha EA, Elsheikh SE, Aleskandarany MA, Habashi HO, Green AR, Powe DG, El-Sayed ME, Benhasouna A, Brunet JS, Akslen LA, Evans AJ, Blamey R, Reis JS, Foulkes WD, Ellis IO (2009) Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clin Cancer Res 15:2302–2310

    Article  PubMed  CAS  Google Scholar 

  49. Foulkes WD, Brunet JS, Stefansson IM, Straume O, Chappuis PO, Begin LR, Hamel N, Goffin JR, Wong N, Trudel M, Kapusta L, Porter P, Akslen LA (2004) The prognostic implication of the basal-like (cyclin E-high/p27(low)/p53(+)/glomeruloid-microvascular-proliferation(+)) phenotype of BRCA1-related breast cancer. Cancer Res 64:830–835

    Article  PubMed  CAS  Google Scholar 

  50. Simon R (2006) Development and evaluation of therapeutically relevant predictive classifiers using gene expression profiling. J Natl Cancer Inst 98:1169–1171

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Breast Cancer Campaign.

Conflict of interest

The authors confirm that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, B.G., Ball, G.R., Rakha, E.A. et al. Lack of expression of the proteins GMPR2 and PPARα are associated with the basal phenotype and patient outcome in breast cancer. Breast Cancer Res Treat 137, 127–137 (2013). https://doi.org/10.1007/s10549-012-2302-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2302-3

Keywords

Navigation