Skip to main content

Advertisement

Log in

IL-2- or IL-15-activated NK cells enhance Cetuximab-mediated activity against triple-negative breast cancer in xenografts and in breast cancer patients

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Triple-negative breast cancer (TNBC) patients do not benefit from target-specific treatments and is associated with a high relapse rate. Epidermal growth factor receptor is frequently expressed in TNBC and is a candidate for new therapies. In this work, we studied Cetuximab-mediated immune activity by NK cells. Thirteen activating/inhibitory receptors were examined on peripheral blood and tumor infiltrating NK cells. NK-cell functionality was evaluated using as effectors tumor-modulated NK cells and NK cells from patients. We evaluated the treatment with Cetuximab plus IL-2 or IL-15 in vivo in TNBC xenografts. Tumor NK-cells receptor profile showed upregulation of inhibitory receptors and downregulation of activating ones. Tumor-modulated NK cells were less cytotoxic. They could perform antibody-dependent cellular cytotoxicity (ADCC) triggered by Cetuximab, although impaired, it could still be restored by stimulation with IL-2 or IL-15. Patients with advanced disease displayed diminished levels of ADCC compared to healthy volunteers. ADCC was restored and potentiated with both cytokines, which were also effective in enhancing the therapeutic activity of Cetuximab in vivo. The combination of Cetuximab with IL-15 and IL-2 may be considered an attractive therapeutic approach to enhance the clinical efficacy of Cetuximab in TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADCC:

Antibody-dependent cellular cytotoxicity

BC:

Breast cancer

EGFR:

Epidermal growth factor receptor

HD:

Healthy donors

IHC:

Immunohistochemistry

IS:

In situ breast cancer patients

Inv:

Invasive breast cancer patients

LA:

Locally advanced breast cancer patients

PBNK:

Peripheral blood NK cells

TNBC:

Triple-negative breast cancer

TINK:

Tumor infiltrating NK cells

SINK:

Stroma infiltrating NK cells

References

  1. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12(5):R68. doi:10.1186/bcr2635

    Article  PubMed  Google Scholar 

  2. Prat A, Perou CM (2011) Deconstructing the molecular portraits of breast cancer. Mol Oncol 5(1):5–23. doi:10.1016/j.molonc.2010.11.003

    Article  PubMed  CAS  Google Scholar 

  3. van de Rijn M, Perou CM, Tibshirani R, Haas P, Kallioniemi O, Kononen J, Torhorst J, Sauter G, Zuber M, Kochli OR, Mross F, Dieterich H, Seitz R, Ross D, Botstein D, Brown P (2002) Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am J Pathol 161(6):1991–1996. doi:10.1016/S0002-9440(10)64476-8

    Article  PubMed  Google Scholar 

  4. Viale G, Rotmensz N, Maisonneuve P, Bottiglieri L, Montagna E, Luini A, Veronesi P, Intra M, Torrisi R, Cardillo A, Campagnoli E, Goldhirsch A, Colleoni M (2009) Invasive ductal carcinoma of the breast with the “triple-negative” phenotype: prognostic implications of EGFR immunoreactivity. Breast Cancer Res Treat 116(2):317–328. doi:10.1007/s10549-008-0206-z

    Article  PubMed  CAS  Google Scholar 

  5. Shin BK, Lee Y, Lee JB, Kim HK, Cho SJ, Kim A (2008) Breast carcinomas expressing basal markers have poor clinical outcome regardless of estrogen receptor status. Oncol Rep 19(3):617–625

    PubMed  Google Scholar 

  6. Billar JA, Dueck AC, Stucky CC, Gray RJ, Wasif N, Northfelt DW, McCullough AE, Pockaj BA (2010) Triple-negative breast cancers: unique clinical presentations and outcomes. Ann Surg Oncol 17(Suppl 3):384–390. doi:10.1245/s10434-010-1260-4

    Article  PubMed  Google Scholar 

  7. Carey L, Winer E, Viale G, Cameron D, Gianni L (2010) Triple-negative breast cancer: disease entity or title of convenience? Nat Rev Clin Oncol 7(12):683–692. doi:10.1038/nrclinonc.2010.154

    Article  PubMed  Google Scholar 

  8. Ciardiello F, Tortora G (2008) EGFR antagonists in cancer treatment. N Engl J Med 358(11):1160–1174. doi:10.1056/NEJMra0707704

    Article  PubMed  CAS  Google Scholar 

  9. Carey LA, Mayer E, Marcom PK et al (2007) TBCRC 001: EGFR inhibition with cetuximab in metastatic triple negative (basal-like) breast cancer. Breast Cancer Res Treat 106(Suppl 1):S32 (abstract 307)

    Google Scholar 

  10. O’Shaughnessy J, Weckstein DJ, Vukelja SJ et al (2007) Preliminary results of a randomized phase II study of weekly irinotecan/carboplatin with or without cetuximab in patients with metastatic breast cancer. Breast Cancer Res Treat 106(Suppl 1):S32 (abstract 308)

    Google Scholar 

  11. Seton-Rogers S (2012) Immunotherapy: combinations that work. Nat Rev Cancer 12(4):231. doi:10.1038/nrc3250nrc3250

    Article  PubMed  Google Scholar 

  12. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9(5):503–510. doi:10.1038/ni1582

    Article  PubMed  CAS  Google Scholar 

  13. Dewan MZ, Terunuma H, Takada M, Tanaka Y, Abe H, Sata T, Toi M, Yamamoto N (2007) Role of natural killer cells in hormone-independent rapid tumor formation and spontaneous metastasis of breast cancer cells in vivo. Breast Cancer Res Treat 104(3):267–275. doi:10.1007/s10549-006-9416-4

    Article  PubMed  CAS  Google Scholar 

  14. de Magalhaes-Silverman M, Donnenberg A, Lembersky B, Elder E, Lister J, Rybka W, Whiteside T, Ball E (2000) Posttransplant adoptive immunotherapy with activated natural killer cells in patients with metastatic breast cancer. J Immunother 23(1):154–160

    Article  Google Scholar 

  15. Geller MA, Cooley S, Judson PL, Ghebre R, Carson LF, Argenta PA, Jonson AL, Panoskaltsis-Mortari A, Curtsinger J, McKenna D, Dusenbery K, Bliss R, Downs LS, Miller JS (2011) A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer. Cytotherapy 13(1):98–107. doi:10.3109/14653249.2010.515582

    Article  PubMed  CAS  Google Scholar 

  16. Leibson PJ (1997) Signal transduction during natural killer cell activation: inside the mind of a killer. Immunity 6(6):655–661

    Article  PubMed  CAS  Google Scholar 

  17. Terunuma H, Deng X, Dewan Z, Fujimoto S, Yamamoto N (2008) Potential role of NK cells in the induction of immune responses: implications for NK cell-based immunotherapy for cancers and viral infections. Int Rev Immunol 27(3):93–110. doi:10.1080/08830180801911743

    Article  PubMed  CAS  Google Scholar 

  18. Anfossi N, Andre P, Guia S, Falk CS, Roetynck S, Stewart CA, Breso V, Frassati C, Reviron D, Middleton D, Romagne F, Ugolini S, Vivier E (2006) Human NK cell education by inhibitory receptors for MHC class I. Immunity 25(2):331–342. doi:10.1016/j.immuni.2006.06.013

    Article  PubMed  CAS  Google Scholar 

  19. Levy EM, Roberti MP, Mordoh J (2011) Natural killer cells in human cancer: from biological functions to clinical applications. J Biomed Biotechnol 2011:676198. doi:10.1155/2011/676198

    Article  PubMed  Google Scholar 

  20. Meazza R, Azzarone B, Orengo AM, Ferrini S (2011) Role of common-gamma chain cytokines in NK cell development and function: perspectives for immunotherapy. J Biomed Biotechnol 2011:861920. doi:10.1155/2011/861920

    Article  PubMed  Google Scholar 

  21. Carson WE, Fehniger TA, Haldar S, Eckhert K, Lindemann MJ, Lai CF, Croce CM, Baumann H, Caligiuri MA (1997) A potential role for interleukin-15 in the regulation of human natural killer cell survival. J Clin Invest 99(5):937–943. doi:10.1172/JCI119258

    Article  PubMed  CAS  Google Scholar 

  22. Cooper MA, Bush JE, Fehniger TA, VanDeusen JB, Waite RE, Liu Y, Aguila HL, Caligiuri MA (2002) In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood 100(10):3633–3638. doi:10.1182/blood-2001-12-0293

    Article  PubMed  CAS  Google Scholar 

  23. Boyiadzis M, Memon S, Carson J, Allen K, Szczepanski MJ, Vance BA, Dean R, Bishop MR, Gress RE, Hakim FT (2008) Up-regulation of NK cell activating receptors following allogeneic hematopoietic stem cell transplantation under a lymphodepleting reduced intensity regimen is associated with elevated IL-15 levels. Biol Blood Marrow Transpl 14(3):290–300. doi:10.1016/j.bbmt.2007.12.490

    Article  CAS  Google Scholar 

  24. Roberti MP, Barrio MM, Bravo AI, Rocca YS, Arriaga JM, Bianchini M, Mordoh J, Levy EM (2011) IL-15 and IL-2 increase cetuximab-mediated cellular cytotoxicity against triple negative breast cancer cell lines expressing EGFR. Breast Cancer Res Treat 130(2):465–475. doi:10.1007/s10549-011-1360-2

    Article  PubMed  CAS  Google Scholar 

  25. Bover L, Barrio M, Slavutsky I, Bravo AI, Quintans C, Bagnati A, Lema B, Schiaffi J, Yomha R, Mordoh J (1991) Description of a new human breast cancer cell line, IIB-BR-G, established from a primary undifferentiated tumor. Breast Cancer Res Treat 19(1):47–56

    Article  PubMed  CAS  Google Scholar 

  26. Bover L, Barrio M, Bravo AI, Slavutsky I, Larripa I, Bolondi A, Ayala M, Mordoh J (1998) The human breast cancer cell line IIB-BR-G has amplified c-myc and c-fos oncogenes in vitro and is spontaneously metastatic in vivo. Cell Mol Biol (Noisy-le-grand) 44(3):493–504

    CAS  Google Scholar 

  27. Carrega P, Morandi B, Costa R, Frumento G, Forte G, Altavilla G, Ratto GB, Mingari MC, Moretta L, Ferlazzo G (2008) Natural killer cells infiltrating human nonsmall-cell lung cancer are enriched in CD56 bright CD16(−) cells and display an impaired capability to kill tumor cells. Cancer 112(4):863–875. doi:10.1002/cncr.23239

    Article  PubMed  Google Scholar 

  28. Carlsten M, Norell H, Bryceson YT, Poschke I, Schedvins K, Ljunggren HG, Kiessling R, Malmberg KJ (2009) Primary human tumor cells expressing CD155 impair tumor targeting by down-regulating DNAM-1 on NK cells. J Immunol 183(8):4921–4930. doi:10.4049/jimmunol.0901226

    Article  PubMed  CAS  Google Scholar 

  29. Platonova S, Cherfils-Vicini J, Damotte D, Crozet L, Vieillard V, Validire P, Andre P, Dieu-Nosjean MC, Alifano M, Regnard JF, Fridman WH, Sautes-Fridman C, Cremer I (2011) Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res 71(16):5412–5422. doi:10.1158/0008-5472.CAN-10-4179

    Article  PubMed  CAS  Google Scholar 

  30. Mamessier E, Sylvain A, Thibult ML, Houvenaeghel G, Jacquemier J, Castellano R, Goncalves A, Andre P, Romagne F, Thibault G, Viens P, Birnbaum D, Bertucci F, Moretta A, Olive D (2011) Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J Clin Invest 121(9):3609–3622. doi:10.1172/JCI4581645816

    Article  PubMed  CAS  Google Scholar 

  31. Rocca YS, Roberti MP, Arriaga JM, Amat M, Bruno L, Pampena MB, Huertas E, Sanchez Loria F, Pairola A, Bianchini M, Mordoh J, Levy EM (2012) Altered phenotype in peripheral blood and tumor-associated NK cells from colorectal cancer patients. Innate Immun. doi:10.1177/1753425912453187

    PubMed  Google Scholar 

  32. Roberti MP, Arriaga JM, Bianchini M, Quinta HR, Bravo AI, Levy EM, Mordoh J, Barrio MM (2012) Protein expression changes during human triple negative breast cancer cell line progression to lymph node metastasis in a xenografted model in nude mice. Cancer Biol Ther 13(11):1123–1140

    Article  PubMed  Google Scholar 

  33. Chacon RD, Costanzo MV (2010) Triple-negative breast cancer. Breast Cancer Res 12(Suppl 2):S3. doi:10.1186/bcr2574

    Article  PubMed  Google Scholar 

  34. Bourhis J, Rivera F, Mesia R, Awada A, Geoffrois L, Borel C, Humblet Y, Lopez-Pousa A, Hitt R, Vega Villegas ME, Duck L, Rosine D, Amellal N, Schueler A, Harstrick A (2006) Phase I/II study of cetuximab in combination with cisplatin or carboplatin and fluorouracil in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol 24(18):2866–2872. doi:10.1200/JCO.2005.04.3547

    Article  PubMed  CAS  Google Scholar 

  35. Baselga J, Trigo JM, Bourhis J, Tortochaux J, Cortes-Funes H, Hitt R, Gascon P, Amellal N, Harstrick A, Eckardt A (2005) Phase II multicenter study of the antiepidermal growth factor receptor monoclonal antibody cetuximab in combination with platinum-based chemotherapy in patients with platinum-refractory metastatic and/or recurrent squamous cell carcinoma of the head and neck. J Clin Oncol 23(24):5568–5577. doi:10.1200/JCO.2005.07.119

    Article  PubMed  CAS  Google Scholar 

  36. Saltz LB, Meropol NJ, Loehrer PJ Sr, Needle MN, Kopit J, Mayer RJ (2004) Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 22(7):1201–1208. doi:10.18210.1200/JCO.2004.10.182

    Article  PubMed  CAS  Google Scholar 

  37. Baselga J, Stemmer S, Pego A, Chan A, Goeminne J C, Graas M P, et al. (2010) Cetuximab + cisplatin in estrogen receptor-negative, progesterone receptor-negative, HER2-negative (triplenegative) metastatic breast cancer: results of the randomized phase II BALI-1 trial. Cancer Res 70: Abstr PD01–01

  38. Carey LA, Rugo HS, Marcom PK, Mayer EL, Esteva FJ, Ma CX, Liu MC, Storniolo AM, Rimawi MF, Forero-Torres A, Wolff AC, Hobday TJ, Ivanova A, Chiu WK, Ferraro M, Burrows E, Bernard PS, Hoadley KA, Perou CM, Winer EP (2012) TBCRC 001: randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer. J Clin Oncol. doi:10.1200/JCO.2010.34.5579

    Google Scholar 

  39. Azzopardi N, Lecomte T, Ternant D, Boisdron-Celle M, Piller F, Morel A, Gouilleux-Gruart V, Vignault-Desvignes C, Watier H, Gamelin E, Paintaud G (2011) Cetuximab pharmacokinetics influences progression-free survival of metastatic colorectal cancer patients. Clin Cancer Res 17(19):6329–6337. doi:10.1158/1078-0432.CCR-11-1081

    Article  PubMed  CAS  Google Scholar 

  40. Fehniger TA, Cooper MA, Caligiuri MA (2002) Interleukin-2 and interleukin-15: immunotherapy for cancer. Cytokine Growth Factor Rev 13(2):169–183

    Article  PubMed  CAS  Google Scholar 

  41. A Phase I Study of Intravenous Recombinant Human IL-15 in Adults With Refractory Metastatic Malignant Melanoma and Metastatic Renal Cell Cancer. November 25, 2009. http://www.clinicaltrials.gov/show/NCT01021059

  42. Luedke E, Jaime-Ramirez AC, Bhave N, Carson WE 3rd (2012) Monoclonal antibody therapy of pancreatic cancer with cetuximab: potential for immune modulation. J Immunother 35(5):367–373. doi:10.1097/CJI.0b013e3182562d76

    Article  PubMed  CAS  Google Scholar 

  43. Abes R, Teillaud JL (2011) Modulation of tumor immunity by therapeutic monoclonal antibodies. Cancer Metastasis Rev 30(1):111–124. doi:10.1007/s10555-011-9282-3

    Article  PubMed  CAS  Google Scholar 

  44. Glennie MJ, French RR, Cragg MS, Taylor RP (2007) Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol Immunol 44(16):3823–3837. doi:10.1016/j.molimm.2007.06.151

    Article  PubMed  CAS  Google Scholar 

  45. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, Hallett M, Park M (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14(5):518–527. doi:10.1038/nm1764

    Article  PubMed  CAS  Google Scholar 

  46. Mamessier E, Sylvain A, Bertucci F, Castellano R, Finetti P, Houvenaeghel G, Charaffe-Jaufret E, Birnbaum D, Moretta A, Olive D (2011) Human breast tumor cells induce self-tolerance mechanisms to avoid NKG2D-mediated and DNAM-mediated NK cell recognition. Cancer Res 71(21):6621–6632. doi:10.1158/0008-5472.CAN-11-0792

    Article  PubMed  CAS  Google Scholar 

  47. Beziat V, Descours B, Parizot C, Debre P, Vieillard V (2010) NK cell terminal differentiation: correlated stepwise decrease of NKG2A and acquisition of KIRs. PLoS ONE 5(8):e11966. doi:10.1371/journal.pone.0011966

    Article  PubMed  Google Scholar 

  48. Gill S, Vasey AE, De Souza A, Baker J, Smith AT, Kohrt HE, Florek M, Gibbs KD Jr, Tate K, Ritchie DS, Negrin RS (2012) Rapid development of exhaustion and downregulation of eomesodermin limits the anti-tumor activity of adoptively transferred murine natural killer cells. Blood. doi:10.1182/blood-2012-03-415364

    Google Scholar 

  49. Rodriguez J, Zarate R, Bandres E, Boni V, Hernandez A, Sola JJ, Honorato B, Bitarte N, Garcia-Foncillas J (2012) Fc gamma receptor polymorphisms as predictive markers of Cetuximab efficacy in epidermal growth factor receptor downstream-mutated metastatic colorectal cancer. Eur J Cancer 12:1774–1780. doi:10.1016/j.ejca.2012.01.007

    Article  Google Scholar 

  50. Grob TJ, Heilenkotter U, Geist S, Paluchowski P, Wilke C, Jaenicke F, Quaas A, Wilczak W, Choschzick M, Sauter G, Lebeau A (2012) Rare oncogenic mutations of predictive markers for targeted therapy in triple-negative breast cancer. Breast Cancer Res Treat. doi:10.1007/s10549-012-2092-7

    PubMed  Google Scholar 

  51. Sanchez-Munoz A, Gallego E, de Luque V, Perez-Rivas LG, Vicioso L, Ribelles N, Lozano J, Alba E (2010) Lack of evidence for KRAS oncogenic mutations in triple-negative breast cancer. BMC Cancer 10:136. doi:10.1186/1471-2407-10-136

    Article  PubMed  Google Scholar 

  52. Habu S, Fukui H, Shimamura K, Kasai M, Nagai Y, Okumura K, Tamaoki N (1981) In vivo effects of anti-asialo GM1. I. Reduction of NK activity and enhancement of transplanted tumor growth in nude mice. J Immunol 127(1):34–38

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants from Fundación Sales, Fundación P. Mosoteguy, Fundación Cáncer (FUCA), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and Fundación María Calderón de la Barca. We are grateful to Ms. María Luisa Poljak for bibliographic support and Ms. Paula Blanco for technical assistance. We also thank the Servicio de Cirugía, Servicio de Patología and Servicio de Hemoterapia del Instituto Alexander Fleming.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estrella M. Levy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10549_2012_2287_MOESM1_ESM.tif

Supplementary material 1 Supplementary Fig. 1. NK cell receptor expression in BC patients. Percentage of each receptor shown was calculated on CD45+CD3-CD56+ population in PBNK (black circles), SINK (black triangles) and TINK (white squares). Means are depicted as horizontal bars. *: P<0.05; **: P<0.01; ***: P<0.001. (TIFF 5768 kb)

10549_2012_2287_MOESM2_ESM.tif

Supplementary material 2 Supplementary Fig. 2. Proliferation assay in co-cultured NK cells. Purified NK cells were stained with 10 μM CFSE. After 5 days of co-culture with tumor cells, MFI of CFSE was measured on NK cell population by flow cytometry. (TIFF 651 kb)

10549_2012_2287_MOESM3_ESM.tif

Supplementary material 3 Supplementary Fig. 3. HLA-I expression in TNBC cell lines. HLA-I expression was measured by flow cytometry. IIB-BR-G and IIB-BR-G MT cell lines were incubated with anti-HLA ABC antibody (dark empty peaks) or control isotype (gray fill peaks). (TIFF 546 kb)

Supplementary material 4 (TIFF 1839 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberti, M.P., Rocca, Y.S., Amat, M. et al. IL-2- or IL-15-activated NK cells enhance Cetuximab-mediated activity against triple-negative breast cancer in xenografts and in breast cancer patients. Breast Cancer Res Treat 136, 659–671 (2012). https://doi.org/10.1007/s10549-012-2287-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2287-y

Keywords

Navigation