Skip to main content

Advertisement

Log in

Elevated nuclear expression of the SMRT corepressor in breast cancer is associated with earlier tumor recurrence

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Silencing mediator of retinoic acid and thyroid hormone receptor (SMRT), also known as nuclear corepressor 2 (NCOR2) is a transcriptional corepressor for multiple members of the nuclear receptor superfamily of transcription factors, including estrogen receptor-α (ERα). In the classical model of corepressor action, SMRT binds to antiestrogen-bound ERα at target promoters and represses ERα transcriptional activity and gene expression. Herein SMRT mRNA and protein expression was examined in a panel of 30 breast cancer cell lines. Expression of both parameters was found to vary considerably amongst lines and the correlation between protein and mRNA expression was very poor (R 2 = 0.0775). Therefore, SMRT protein levels were examined by immunohistochemical staining of a tissue microarray of 866 patients with stage I–II breast cancer. Nuclear and cytoplasmic SMRT were scored separately according to the Allred score. The majority of tumors (67 %) were negative for cytoplasmic SMRT, which when detected was found at very low levels. In contrast, nuclear SMRT was broadly detected. There was no significant difference in time to recurrence (TTR) according to SMRT expression levels in the ERα-positive tamoxifen-treated patients (P = 0.297) but the difference was significant in the untreated patients (P = 0.01). In multivariate analysis, ERα-positive tamoxifen-untreated patients with high nuclear SMRT expression (SMRT 5-8, i.e., 2nd to 4th quartile) had a shorter TTR (HR = 1.94, 95 % CI, 1.24–3.04; P = 0.004) while there was no association with SMRT expression for ERα-positive tamoxifen-treated patients. There was no association between SMRT expression and overall survival for patients, regardless of whether they received tamoxifen. Thus while SMRT protein expression was not predictive of outcome after antiestrogen therapy, it may have value in predicting tumor recurrence in patients not receiving adjuvant tamoxifen therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ross RK, Paganini-Hill A, Wan PC, Pike MC (2000) Effect of hormone replacement therapy on breast cancer risk: estrogen versus estrogen plus progestin. J Natl Cancer Inst 92(4):328–332

    Article  PubMed  CAS  Google Scholar 

  2. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J, Writing Group for the Women’s Health Initiative Investigators (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 288(3):321–333

    Article  PubMed  CAS  Google Scholar 

  3. Anderson E (2002) The role of oestrogen and progesterone receptors in human mammary development and tumorigenesis. Breast Cancer Res 4:197–201

    Article  PubMed  CAS  Google Scholar 

  4. Clarke CA, Glasser SL, Uratsu CS, Selby JV, Kushi LH, Herrington LJ (2006) Recent declines in hormone therapy utilization and breast cancer incidence: clinical and population-based evidence. J Clin Oncol 24:e49–e50

    Article  PubMed  Google Scholar 

  5. Symmans WF, Hatzis C, Sotiriou C, Andre F, Peintinger F, Regitnig P, Daxenbichler G, Desmedt C, Domont J, Marth C, Delaloge S, Bauernhofer T, Valero V, Booser DJ, Hortobagyi GN, Pusztai L (2010) Genomic index of sensitivity to endocrine therapy for breast cancer. J Clin Oncol 27:4111–4119

    Article  Google Scholar 

  6. Xu J, Wu RC, O’Malley BW (2009) Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat Rev Cancer 9:615–630

    Article  PubMed  CAS  Google Scholar 

  7. Shang Y, Brown M (2002) Molecular determinants for the tissue specificity of SERMs. Science 295(5564):2465–2468

    Article  PubMed  CAS  Google Scholar 

  8. Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua SAW, Wong J, Allred DC, Clark GM, Schiff R (2003) Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst 95(5):353–361

    Article  PubMed  CAS  Google Scholar 

  9. Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, Schiff R (2004) Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 96(12):926–935

    Article  PubMed  CAS  Google Scholar 

  10. Smith CL, Nawaz Z, O’Malley BW (1997) Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol Endocrinol 11(6):657–666

    Article  PubMed  CAS  Google Scholar 

  11. Scott DJ, Parkes AT, Ponchel F, Cummings M, Poola I, Speirs V (2007) Changes in expression of steroid receptors, their downstream target genes and their associated co-regulators during the sequential acquisition of tamoxifen resistance in vitro. Int J Oncol 31(3):557–565

    PubMed  CAS  Google Scholar 

  12. Sarvilinna N, Eronen H, Miettinen S, Vienonen A, Ylikomi T (2006) Steroid hormone receptors and coregulators in endocrine-resistant and estrogen-independent breast cancer cells. Int J Cancer 118(4):832–840

    Article  PubMed  CAS  Google Scholar 

  13. Chan CMW, Martin L-A, Johnston SRD, Ali S, Dowsett M (2002) Molecular changes associated with the acquisition of oestrogen hypersensitivity in MCF-7 breast cancer cells on long-term oestrogen deprivation. Steroid Biochem Mol Biol 81(4–5):333–341

    Article  CAS  Google Scholar 

  14. Thenot S, Charpin M, Bonnet S, Cavailles V (1999) Estrogen receptor cofactors expression in breast and endometrial human cancer cells. Mol Cell Endocrinol 156(1–2):85–93

    Article  PubMed  CAS  Google Scholar 

  15. Magklara A, Brown TJ, Diamandis EP (2002) Characterization of androgen receptor and nuclear receptor co-regulator expression in human breast cancer cell lines exhibiting differential regulation of kallikreins 2 and 3. Int J Cancer 100(5):507–514

    Article  PubMed  CAS  Google Scholar 

  16. Chan CMW, Lykkesfeldt AE, Parker MG, Dowsett M (1999) Expression of nuclear receptor interacting proteins TIF-1, SUG-1, receptor interacting protein 140, and corepressor SMRT in tamoxifen-resistant breast cancer. Clin Cancer Res 5(11):3460–3467

    PubMed  CAS  Google Scholar 

  17. Kurebayashi J, Otsuki T, Kunisue H, Tanaka K, Yamamoto S, Sonoo H (2000) Expression levels of estrogen receptor-α, estrogen receptor-β, coactivators, and corepressors in breast cancer. Clin Cancer Res 6(2):512–518

    PubMed  CAS  Google Scholar 

  18. Fleming FJ, Hill AD, McDermott EW, O’Higgins NJ, Young LS (2004) Differential recruitment of coregulator proteins steroid receptor coactivator-1 and silencing mediator for retinoid and thyroid receptors to the estrogen receptor-estrogen response element by β-estradiol and 4-hydroxytamoxifen in human breast cancer. J Clin Endocrinol Metab 89(1):375–383

    Article  PubMed  CAS  Google Scholar 

  19. van Agthoven T, Sieuwerts AM, Veldscholte J, Meijer-van Gelder ME, Smid M, Brinkman A, den Dekker AT, Leroy IM, van Ijcken WFJ, Sleijfer S, Foekens JA, Dorssers LCJ (2009) CITED2 and NCOR2 in anti-oestrogen resistance and progression of breast cancer. Brit J Cancer 101(11):1824–1832

    Article  PubMed  Google Scholar 

  20. Peterson TJ, Karmakar S, Pace MC, Gao T, Smith CL (2007) The silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressor is required for full estrogen receptor-α transcriptional activity. Mol Cell Biol 27(17):5933–5948

    Article  PubMed  CAS  Google Scholar 

  21. Karmakar S, Gao T, Pace MC, Oesterreich S, Smith CL (2010) Cooperative activation of cyclin D1 and progesterone receptor gene expression by the SRC-3 coactivator and SMRT corepressor. Mol Endocrinol 24:1187–1202

    Article  PubMed  CAS  Google Scholar 

  22. Green AR, Burney C, Granger CJ, Paish EC, El-Sheikh S, Rakha EA, Powe DG, Macmillin RD, Ellis IO, Stylianou E (2008) The prognostic significance of steroid receptor co-regulators in breast cancer: co-repressor NCOR2/SMRT is an independent indicator of poor outcome. Breast Cancer Res Treat 110(3):427–437

    Article  PubMed  CAS  Google Scholar 

  23. Migliaccio I, Wu M-F, Gutierrez C, Malorni L, Mohsin SK, Allred DC, Hilsenbeck SG, Osborne CK, Weiss H, Lee AV (2009) Nuclear IRS-1 predicts tamoxifen response in patients with early breast cancer. Breast Cancer Res Treat 123(3):651–660

    Article  PubMed  Google Scholar 

  24. Harvey JM, Clark GM, Osborne CK, Allred DC (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol 17(5):1474–1481

    PubMed  CAS  Google Scholar 

  25. Mohsin SK, Clark GM, Havighurst T, Weiss H, Berardo M, Roanh LD, To TV, Zhang Q, Love RR, Allred DC (2004) Progesterone receptor by immunohistochemistry and clinical outcome in breast cancer: a validation study. Modern Pathol 17(12):1545–1554

    Article  CAS  Google Scholar 

  26. Karmakar S, Foster EA, Smith CL (2009) Unique roles of p160 coactivators for regulation of breast cancer cell proliferation and estrogen receptor-α transcriptional activity. Endocrinology 150:1588–1596

    Article  PubMed  CAS  Google Scholar 

  27. Allred DC, Harvey JM, Bernardo M, Clark GM (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 11(2):155–168

    PubMed  CAS  Google Scholar 

  28. Hommel G (1988) A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika 75:383–386

    Article  Google Scholar 

  29. Kao J, Salari K, Bocanegra M, Choi Y-L, Girard L, Gandhi J, Kwei KA, Hernandez-Boussard T, Wang P, Gazdar AF, Minna JD, Pollack JR (2009) Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS ONE 4(7):e6146. doi:10.1371/journal.pone.0006146

    Article  PubMed  Google Scholar 

  30. Dieli-Conwright CM, Spektor TM, Rice JC, Schroeder ET (2009) Oestradiol and SERM treatments influence oestrogen receptor coregulator gene expression in human skeletal muscle cells. Acta Physiol 197(3):187–196

    Article  CAS  Google Scholar 

  31. Ochsner SA, Steffen DL, Hilsenbeck SG, Chen ES, Watkins CM, McKenna NJ (2009) GEMS (Gene Expression MetaSignatures), a web resource for querying meta-analysis of expression microarray datasets: 17β-estradiol in MCF-7 cells. Canc Res 69(1):23–26

    Article  CAS  Google Scholar 

  32. Stanya KJ, Liu Y, Means AR, Kao H-Y (2008) Cdk2 and Pin1 negatively regulate the transcriptional corepressor SMRT. J Cell Biol 183(1):49–61

    Article  PubMed  CAS  Google Scholar 

  33. Hoberg JE, Yeung F, Mayo MW (2004) SMRT derepression by the IκB kinase α: a prerequisite to NF-κB transcription and survival. Mol Cell 16(2):245–255

    Article  PubMed  CAS  Google Scholar 

  34. Jonas BA, Privalsky ML (2004) SMRT and N-CoR corepressors are regulated by distinct kinase signaling pathways. J Biol Chem 279(52):54676–54686

    Article  PubMed  CAS  Google Scholar 

  35. Jonas BA, Varlakhanova N, Hayakawa F, Goodson M, Privalsky ML (2007) Response of SMRT (Silencing Mediator of Retinoic Acid and Thyroid Hormone Receptor) and N-CoR (Nuclear Receptor Corepressor) corepressors to mitogen-activated protein kinase kinase kinase cascades is determined by alternative mRNA splicing. Mol Endo 21(8):1924–1939

    Article  CAS  Google Scholar 

  36. Liu E, Thor A, He M, Marcos M, Ljung BM, Benz C (1992) The HER2 (c-erbB-2) oncogene is frequently amplified in in situ carcinomas of the breast. Oncogene 7:1027–1032

    PubMed  CAS  Google Scholar 

  37. Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56:4625–4629

    PubMed  CAS  Google Scholar 

  38. Cheng X, Kao H-Y (2009) G protein pathway suppressor 2 (GPS2) is a transcriptional corepressor important for estrogen receptor α-mediated transcriptional regulation. J Biol Chem 284:36395–36404

    Article  PubMed  CAS  Google Scholar 

  39. Khanim FL, Gommersall LM, Wood VHJ, Smith KL, Montalvo L, O’Neill LP, Xu Y, Peehl DM, Stewart PM, Turner BM, Campbell MJ (2004) Altered SMRT levels disrupt vitamin D3 receptor signalling in prostate cancer cells. Oncogene 23:6712–6725

    Article  PubMed  CAS  Google Scholar 

  40. Ting H-J, Bao B-Y, Reeder JE, Messing EM, Lee Y-F (2007) Increased expression of corepressors in aggressive androgen-independent prostate cancer cells results in loss of 1α, 25-dihydroxyvitamin D3 responsiveness. Mol Cancer Res 5:967–980

    Article  PubMed  CAS  Google Scholar 

  41. Keeton EK, Brown M (2005) Cell cycle progression stimulated by tamoxifen-bound estrogen receptor-α and promoter-specific effects in breast cancer cells deficient in N-CoR and SMRT. Mol Endocrinol 19(6):1543–1554

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (DK53002 to CLS, and a SPORE Pilot Project P50CA058183 to SO), the Department of Defense (W81XWH-08-1-0586 to CLS), the American Cancer Society (PF-07-233-01-TBE to MCP), the Proteomics and Biostatistics & Informatics Cores of the NCI Cancer Center Support Grant (P30CA125123) and the Breast Cancer SPORE Grant (P50CA058183).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn L. Smith.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, C.L., Migliaccio, I., Chaubal, V. et al. Elevated nuclear expression of the SMRT corepressor in breast cancer is associated with earlier tumor recurrence. Breast Cancer Res Treat 136, 253–265 (2012). https://doi.org/10.1007/s10549-012-2262-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2262-7

Keywords

Navigation