Skip to main content

Advertisement

Log in

Low expression of ULK1 is associated with operable breast cancer progression and is an adverse prognostic marker of survival for patients

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

An Erratum to this article was published on 09 March 2016

Abstract

ULK1 plays an important role in autophagy which is widely involved in the development of breast cancer. However, the function and expression of ULK1 in human breast cancer is still scarcely explored. In this study, we showed that the mRNA and protein levels of ULK1 decreased in 10 of 14 (71.4 %) breast cancer tissues, compared with matched normal tissues. Furthermore, immunohistochemical staining of ULK1 was performed on the tissue microarray containing 298 non-metastatic invasive breast primary cancer tissues and 73 matched adjacent noncancerous tissues. 70.1 % breast cancer specimens displayed none to weak staining of ULK1, however, 78.1 % adjacent noncancerous specimens showed moderate to strong staining of ULK1. Statistical analysis revealed that ULK1 expression was negatively correlated with tumor size (r = −0.176, P = 0.002), lymph node status (r = −0.115, P = 0.048), and pathological stage (r = −0.177, P = 0.002). The log-rank test showed that patients with lower level of ULK1 had a significant shorter distant metastasis-free survival time (P = 0.008) and cancer-related survival time (P = 0.008). Multivariate Cox regression analysis found that ULK1 expression was recognized as an independent prognostic factor (P = 0.034). In addition, a significant positive correlation between expression of ULK1 and LC3A (r = 0.401, P < 0.001), and a significant negative correlation between expression of ULK1 and p62 (r = −0.226, P < 0.001) were observed in our breast cancer cohort. These findings suggest that decreased expression of ULK1 is associated with breast cancer progression, together with closely related to decreased autophagic capacity. ULK1 also may be used as a novel prognostic biomarker for breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fitzgibbons PL, Page DL, Weaver D, Thor AD, Allred DC, Clark GM, Ruby SG, O’Malley F, Simpson JF, Connolly JL, Hayes DF, Edge SB, Lichter A, Schnitt SJ (2000) Prognostic factors in breast cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med 124(7):966–978. doi:10.1043/0003-9985

    PubMed  CAS  Google Scholar 

  2. Stark A, Hulka BS, Joens S, Novotny D, Thor AD, Wold LE, Schell MJ, Melton LJ 3rd, Liu ET, Conway K (2000) HER-2/neu amplification in benign breast disease and the risk of subsequent breast cancer. J Clin Oncol 18(2):267–274

    PubMed  CAS  Google Scholar 

  3. Rakha EA, Reis-Filho JS, Ellis IO (2010) Combinatorial biomarker expression in breast cancer. Breast Cancer Res Treat 120(2):293–308

    Article  PubMed  CAS  Google Scholar 

  4. Thomas S, Thurn KT, Bicaku E, Marchion DC, Munster PN (2011) Addition of a histone deacetylase inhibitor redirects tamoxifen-treated breast cancer cells into apoptosis, which is opposed by the induction of autophagy. Breast Cancer Res Treat 130(2):437–447

    Article  PubMed  CAS  Google Scholar 

  5. Li J, Zhang N, Song LB, Liao WT, Jiang LL, Gong LY, Wu J, Yuan J, Zhang HZ, Zeng MS, Li M (2008) Astrocyte elevated gene-1 is a novel prognostic marker for breast cancer progression and overall patient survival. Clin Cancer Res 14(11):3319–3326

    Article  PubMed  CAS  Google Scholar 

  6. Zhao M, Klionsky DJ (2011) AMPK-dependent phosphorylation of ULK1 induces autophagy. Cell Metab 13(2):119–120

    Article  PubMed  CAS  Google Scholar 

  7. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075

    Article  PubMed  CAS  Google Scholar 

  8. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290(5497):1717–1721

    Article  PubMed  CAS  Google Scholar 

  9. Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel JM, Dell’antonio G, Mautner J, Tonon G, Haigis M, Shirihai OS, Doglioni C, Bardeesy N, Kimmelman AC (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25(7):717–729

    Article  PubMed  CAS  Google Scholar 

  10. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402(6762):672–676

    Article  PubMed  CAS  Google Scholar 

  11. Karantza-Wadsworth V, White E (2007) Role of autophagy in breast cancer. Autophagy 3(6):610–613

    PubMed  CAS  Google Scholar 

  12. Aita VM, Liang XH, Murty VV, Pincus DL, Yu W, Cayanis E, Kalachikov S, Gilliam TC, Levine B (1999) Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59(1):59–65

    Article  PubMed  CAS  Google Scholar 

  13. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Investig 112(12):1809–1820

    PubMed  CAS  Google Scholar 

  14. Kuroyanagi H, Yan J, Seki N, Yamanouchi Y, Suzuki Y, Takano T, Muramatsu M, Shirasawa T (1998) Human ULK1, a novel serine/threonine kinase related to UNC-51 kinase of Caenorhabditis elegans: cDNA cloning, expression, and chromosomal assignment. Genomics 51(1):76–85

    Article  PubMed  CAS  Google Scholar 

  15. Yan J, Kuroyanagi H, Kuroiwa A, Matsuda Y, Tokumitsu H, Tomoda T, Shirasawa T, Muramatsu M (1998) Identification of mouse ULK1, a novel protein kinase structurally related to C. elegans UNC-51. Biochem Biophys Res Commun 246(1):222–227

    Article  PubMed  CAS  Google Scholar 

  16. Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan JL, Mizushima N (2008) FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 181(3):497–510

    Article  PubMed  CAS  Google Scholar 

  17. Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N (2009) Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5(7):973–979

    Article  PubMed  CAS  Google Scholar 

  18. Mercer CA, Kaliappan A, Dennis PB (2009) A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 5(5):649–662

    Article  PubMed  CAS  Google Scholar 

  19. Mizushima N (2010) The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22(2):132–139

    Article  PubMed  CAS  Google Scholar 

  20. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331(6016):456–461

    Article  PubMed  CAS  Google Scholar 

  21. Shang L, Wang X (2011) AMPK and mTOR coordinate the regulation of Ulk1 and mammalian autophagy initiation. Autophagy 7(8):924–926

    Article  PubMed  Google Scholar 

  22. Deng R, Tang J, Ma JG, Chen SP, Xia LP, Zhou WJ, Li DD, Feng GK, Zeng YX, Zhu XF (2011) PKB/Akt promotes DSB repair in cancer cells through upregulating Mre11 expression following ionizing radiation. Oncogene 30(8):944–955

    Article  PubMed  CAS  Google Scholar 

  23. Deng R, Tang J, Xia LP, Li DD, Zhou WJ, Wang LL, Feng GK, Zeng YX, Gao YH, Zhu XF (2009) ExcisaninA, a diterpenoid compound purified from Isodon MacrocalyxinD, induces tumor cells apoptosis and suppresses tumor growth through inhibition of PKB/AKT kinase activity and blockade of its signal pathway. Mol Cancer Ther 8(4):873–882

    Article  PubMed  CAS  Google Scholar 

  24. Zhou WJ, Deng R, Zhang XY, Feng GK, Gu LQ, Zhu XF (2009) G-quadruplex ligand SYUIQ-5 induces autophagy by telomere damage and TRF2 delocalization in cancer cells. Mol Cancer Ther 8(12):3203–3213

    Article  PubMed  CAS  Google Scholar 

  25. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4(7):844–847

    Article  PubMed  CAS  Google Scholar 

  26. Jiang S, Li Y, Zhu YH, Wu XQ, Tang J, Li Z, Feng GK, Deng R, Li DD, Luo RZ, Zhang MF, Qin W, Wang X, Jia WH, Zhu XF (2011) Intensive expression of UNC-51-like kinase 1 is a novel biomarker of poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Sci 102(8):1568–1575. doi:10.1111/j.1349-7006.2011.01964.x

    Article  PubMed  CAS  Google Scholar 

  27. Sivridis E, Koukourakis MI, Zois CE, Ledaki I, Ferguson DJ, Harris AL, Gatter KC, Giatromanolaki A (2010) LC3A-positive light microscopy detected patterns of autophagy and prognosis in operable breast carcinomas. Am J Pathol 176(5):2477–2489

    Article  PubMed  CAS  Google Scholar 

  28. Rolland P, Madjd Z, Durrant L, Ellis IO, Layfield R, Spendlove I (2007) The ubiquitin-binding protein p62 is expressed in breast cancers showing features of aggressive disease. Endocr Relat Cancer 14(1):73–80

    Article  PubMed  Google Scholar 

  29. Borgquist S, Holm C, Stendahl M, Anagnostaki L, Landberg G, Jirstrom K (2008) Oestrogen receptors alpha and beta show different associations to clinicopathological parameters and their co-expression might predict a better response to endocrine treatment in breast cancer. J Clin Pathol 61(2):197–203

    Article  PubMed  CAS  Google Scholar 

  30. Hayes DF, Ethier S, Lippman ME (2006) New guidelines for reporting of tumor marker studies in breast cancer research and treatment: REMARK. Breast Cancer Res Treat 100(2):237–238. doi:10.1007/s10549-006-9253-5

    Article  PubMed  Google Scholar 

  31. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2005) Reporting recommendations for tumor marker prognostic studies. J Clin Oncol 23(36):9067–9072

    Article  PubMed  Google Scholar 

  32. Sivridis E, Koukourakis MI, Mendrinos SE, Karpouzis A, Fiska A, Kouskoukis C, Giatromanolaki A (2011) Beclin-1 and LC3A expression in cutaneous malignant melanomas: a biphasic survival pattern for beclin-1. Melanoma Res 21(3):188–195

    Article  PubMed  CAS  Google Scholar 

  33. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140(3):313–326

    Article  PubMed  CAS  Google Scholar 

  34. Giatromanolaki A, Koukourakis MI, Harris AL, Polychronidis A, Gatter KC, Sivridis E (2011) Prognostic relevance of light chain 3 (LC3A) autophagy patterns in colorectal adenocarcinomas. J Clin Pathol 63(10):867–872

    Article  Google Scholar 

  35. Giatromanolaki AN, Charitoudis GS, Bechrakis NE, Kozobolis VP, Koukourakis MI, Foerster MH, Sivridis EL (2011) Autophagy patterns and prognosis in uveal melanomas. Mod Pathol 24(8):1036–1045

    Article  PubMed  CAS  Google Scholar 

  36. Karpathiou G, Sivridis E, Koukourakis MI, Mikroulis D, Bouros D, Froudarakis ME, Giatromanolaki A (2011) Light-chain 3A autophagic activity and prognostic significance in non-small cell lung carcinomas. Chest 140(1):127–134

    Article  PubMed  Google Scholar 

  37. Kirkin V, McEwan DG, Novak I, Dikic I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34(3):259–269

    Article  PubMed  CAS  Google Scholar 

  38. Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, Dipaola RS, Karantza-Wadsworth V, White E (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137(6):1062–1075

    Article  PubMed  CAS  Google Scholar 

  39. Chan EY, Longatti A, McKnight NC, Tooze SA (2009) Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol 29(1):157–171

    Article  PubMed  CAS  Google Scholar 

  40. Chan EY, Kir S, Tooze SA (2007) siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J Biol Chem 282(35):25464–25474

    Article  PubMed  CAS  Google Scholar 

  41. Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J, Selak MA, Ney PA, Thompson CB (2008) Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112(4):1493–1502

    Article  PubMed  CAS  Google Scholar 

  42. Cheong H, Lindsten T, Wu J, Lu C, Thompson CB (2011) Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proc Nat Acad Sci USA 108(27):11121–11126

    Article  PubMed  CAS  Google Scholar 

  43. Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12(9):814–822

    Article  PubMed  CAS  Google Scholar 

  44. Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev 5(9):726–734

    Article  CAS  Google Scholar 

  45. White EJ, Martin V, Liu JL, Klein SR, Piya S, Gomez-Manzano C, Fueyo J, Jiang H (2011) Autophagy regulation in cancer development and therapy. Am J Cancer Res 1(3):362–372

    PubMed  CAS  Google Scholar 

  46. Jung CH, Seo M, Otto NM, Kim DH (2011) ULK1 inhibits the kinase activity of mTORC1 and cell proliferation. Autophagy 7(10):1212–1221

    Article  PubMed  CAS  Google Scholar 

  47. Gao W, Shen Z, Shang L, Wang X (2011) Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage-induced cell death. Cell Death Differ 18:1598–1607

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by grants from Major science and technology project of the National Basic Research Program (973 Program) of China (2011CB504300), Natural Science Foundation of Guangdong in China (10451008901004533), Nature Science Foundation of China (81001446), Foundation of the Ministry of Science and Technology of Guangdong Province (2011B080701052), Foundation for Distinguished Young Scholars of Sun Yat-Sen University [Grant10ykpy39].

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Hua Fu or Xiao-Feng Zhu.

Additional information

Jun Tang, Rong Deng, and Rong-Zhen Luo equally contributed to this article.

An erratum to this article is available at http://dx.doi.org/10.1007/s10549-016-3703-5.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 885 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, J., Deng, R., Luo, RZ. et al. Low expression of ULK1 is associated with operable breast cancer progression and is an adverse prognostic marker of survival for patients. Breast Cancer Res Treat 134, 549–560 (2012). https://doi.org/10.1007/s10549-012-2080-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2080-y

Keywords

Navigation