Skip to main content

Advertisement

Log in

Non-invasive quantification of tumor vascular architecture during docetaxel-chemotherapy

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

New ultrasound parameters, potentially predictive of tumor response to chemotherapy, were sought after analyzing details of vascular architecture of mammary tumors during chemotherapy. Tumor-bearing rats were separated into untreated or docetaxel-treated group (6 mg/kg/week). Power Doppler Index and vascular contrast-enhanced ultrasound (CEUS) reference endpoints (Peak, area under the curve (AUC), blood flow) were evaluated at the beginning (W 0), and after 2 and 6 weeks of docetaxel treatment (W +2 and W +6). An improved CEUS image analysis, taking advantage of individual pixel intensity, was developed to quantify large, medium, and small vessels of tumors. Standard immunohistochemistry validated this new methodology analyzing tumor vascular architecture. In rats, there was an enrichment of vascularization with large vessels during tumor growth indicative of a vascular adjustment to tumor size. Docetaxel stopped tumor growth, and showed a sequential effect on vascular parameters. After an initial enrichment in larger vessels (by threefold) at W +2, docetaxel led to a diminution of vascular parameters at W +6 (−46 % for peak, −55 % for AUC −31 % compared to W 0) and a vascular remodeling in favor of small vessels. One of the CEUS parameters measured before chemotherapy, the so-called global contrast-enhanced pixels density, was predictive of rat tumor response to treatment (r = 0.80; p < 0.01). The method was then applied in a clinical setting to detect changes of vascular architecture during chemotherapy of human breast carcinoma. The docetaxel chemotherapy of breast carcinomas induced a similar sequential effect, with vessel enlargement after two cycles of docetaxel treatment and an antiangiogenic effect after six cycles. Such vascular remodeling was not noticed when patients were treated with 5-fluorouracil–epirubicin–cyclophosphamide. Taken together, the sharpened analysis of CEUS pixel intensity presented here strengthened the monitoring of breast tumor vasculature with the potential to improve the prediction of docetaxel efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

CEUS:

Contrast-enhanced ultrasound

CEUS-I:

Contrast-enhanced ultrasound index

GPD:

Global contrast-enhanced pixel density

HighPD:

High intensity-pixel density

MedPD:

Medium intensity-pixel density

LowPD:

Low intensity-pixel density

NMU:

N-methyl-N-nitroso-urea

PDI:

Power Doppler Index

ROI:

Region of interest

FEC:

Chemotherapeutic combination with 5-Fluorouracil, Epirubicin and Cyclosphosphamide

References

  1. Furuya M, Nishiyama M, Kasuya Y, Kimura S, Ishikura H (2005) Pathophysiology of tumor neovascularization. Vasc Health Risk Manag 1:277–290

    Article  PubMed  CAS  Google Scholar 

  2. Fukumura D, Jain RK (2007) Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 74:72–84

    Article  PubMed  CAS  Google Scholar 

  3. Uzzan B, Nicolas P, Cucherat M, Perret GY (2004) Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res 64:2941–2955

    Article  PubMed  CAS  Google Scholar 

  4. Bremnes RM, Camps C, Sirera R (2006) Angiogenesis in non-small cell lung cancer: the prognostic impact of neoangiogenesis and the cytokines VEGF and bFGF in tumours and blood. Lung Cancer 51:143–158

    Article  PubMed  Google Scholar 

  5. Meert AP, Paesmans M, Martin B, Delmotte P, Berghmans T, Verdebout JM, Lafitte JJ, Mascaux C, Sculier JP (2002) The role of microvessel density on the survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer 87:694–701

    Article  PubMed  Google Scholar 

  6. Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, Meli S, Gasparini G (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 84:1875–1887

    Article  PubMed  CAS  Google Scholar 

  7. Schimming R, Hunter NR, Mason KA, Milas L (1999) Inhibition of tumor neo-angiogenesis and induction of apoptosis as properties of docetaxel (taxotere). Mund Kiefer Gesichtschir 3:210–212

    Article  PubMed  CAS  Google Scholar 

  8. Halder J, Lin YG, Merritt WM, Spannuth WA, Nick AM, Honda T, Kamat AA, Han LY, Kim TJ, Lu C, Tari AM, Bornmann W, Fernandez A, Lopez-Berestein G, Sood AK (2007) Therapeutic efficacy of a novel focal adhesion kinase inhibitor TAE226 in ovarian carcinoma. Cancer Res 67:10976–10983

    Article  PubMed  CAS  Google Scholar 

  9. Huang X, Bennett M, Thorpe PE (2005) A monoclonal antibody that binds anionic phospholipids on tumor blood vessels enhances the antitumor effect of docetaxel on human breast tumors in mice. Cancer Res 65:4408–4416

    Article  PubMed  CAS  Google Scholar 

  10. Schwartz EL (2009) Antivascular actions of microtubule-binding drugs. Clin Cancer Res 15:2594–2601

    Article  PubMed  CAS  Google Scholar 

  11. Polcher M, Rudlowski C, Friedrichs N, Mielich M, Holler T, Wolfgarten M, Kubler K, Buttner R, Kuhn W, Braun M (2010) In vivo intratumor angiogenic treatment effects during taxane-based neoadjuvant chemotherapy of ovarian cancer. BMC Cancer 10:137

    Article  PubMed  Google Scholar 

  12. Griffon-Etienne G, Boucher Y, Brekken C, Suit HD, Jain RK (1999) Taxane-induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: clinical implications. Cancer Res 59:3776–3782

    PubMed  CAS  Google Scholar 

  13. Fox SB, Harris AL (2004) Histological quantitation of tumour angiogenesis. Apmis 112:413–430

    Article  PubMed  Google Scholar 

  14. Robinson BD, Sica GL, Liu YF, Rohan TE, Gertler FB, Condeelis JS, Jones JG (2009) Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clin Cancer Res 15:2433–2441

    Article  PubMed  CAS  Google Scholar 

  15. McDonald DM, Choyke PL (2003) Imaging of angiogenesis: from microscope to clinic. Nat Med 9:713–725

    Article  PubMed  CAS  Google Scholar 

  16. Stewart VR, Sidhu PS (2006) New directions in ultrasound: microbubble contrast. Br J Radiol 79:188–194

    Article  PubMed  CAS  Google Scholar 

  17. Bleuzen A, Tranquart F (2004) Incidental liver lesions: diagnostic value of cadence contrast pulse sequencing (CPS) and SonoVue. Eur Radiol 14(Suppl 8):P53–P62

    PubMed  Google Scholar 

  18. Huang-Wei C, Bleuzen A, Bourlier P, Roumy J, Bouakaz A, Pourcelot L, Tranquart F (2006) Differential diagnosis of focal nodular hyperplasia with quantitative parametric analysis in contrast-enhanced sonography. Investig Radiol 41:363–368

    Article  Google Scholar 

  19. Delorme S, Krix M (2006) Contrast-enhanced ultrasound for examining tumor biology. Cancer Imaging 6:148–152

    Article  PubMed  Google Scholar 

  20. Cosgrove D, Lassau N (2009) Assessment of tumour angiogenesis using contrast-enhanced ultrasound. J Radiol 90:156–164

    Article  PubMed  CAS  Google Scholar 

  21. Denis F, Bougnoux P, de Poncheville L, Prat M, Catroux R, Tranquart F (2002) In vivo quantitation of tumour vascularisation assessed by Doppler sonography in rat mammary tumours. Ultrasound Med Biol 28:431–437

    Article  PubMed  Google Scholar 

  22. Cosgrove D (2003) Angiogenesis imaging—ultrasound. Br J Radiol 76 Spec No 1:S43–S49

  23. Fleischer AC, Wojcicki WE, Donnelly EF, Pickens DR, Thirsk G, Thurman GB, Hellerqvist CG (1999) Quantified color Doppler sonography of tumor vascularity in an animal model. J Ultrasound Med 18:547–551

    PubMed  CAS  Google Scholar 

  24. Schneider M (2002) Contrast media in ultrasonography: from synthesis to clinical use. The SonoVue example. Ann Cardiol Angeiol (Paris) 51:218–220

    Article  CAS  Google Scholar 

  25. Lassau N, Koscielny S, Opolon P, De Baere T, Peronneau P, Leclere J, Roche A (2001) Evaluation of contrast-enhanced color Doppler ultrasound for the quantification of angiogenesis in vivo. Investig Radiol 36:50–55

    Article  CAS  Google Scholar 

  26. Du J, Li FH, Fang H, Xia JG, Zhu CX (2008) Correlation of real-time gray scale contrast-enhanced ultrasonography with microvessel density and vascular endothelial growth factor expression for assessment of angiogenesis in breast lesions. J Ultrasound Med 27:821–831

    PubMed  Google Scholar 

  27. Hwang M, Niermann KJ, Lyshchik A, Fleischer AC (2009) Sonographic assessment of tumor response: from in vivo models to clinical applications. Ultrasound Q 25:175–183

    Article  PubMed  Google Scholar 

  28. Lassau N, Chami L, Benatsou B, Peronneau P, Roche A (2007) Dynamic contrast-enhanced ultrasonography (DCE-US) with quantification of tumor perfusion: a new diagnostic tool to evaluate the early effects of antiangiogenic treatment. Eur Radiol 17(Suppl 6):F89–F98

    PubMed  Google Scholar 

  29. Sehgal CM, Cary TW, Arger PH, Wood AK (2009) Delta-projection imaging on contrast-enhanced ultrasound to quantify tumor microvasculature and perfusion. Acad Radiol 16:71–78

    Article  PubMed  Google Scholar 

  30. Chajes V, Lanson M, Fetissof F, Lhuillery C, Bougnoux P (1995) Membrane fatty acids of breast carcinoma: contribution of host fatty acids and tumor properties. Int J Cancer 63:169–175

    Article  PubMed  CAS  Google Scholar 

  31. Lhuillery C, Bougnoux P, Groscolas R, Durand G (1995) Time-course study of adipose tissue fatty acid composition during mammary tumor growth in rats with controlled fat intake. Nutr Cancer 24:299–309

    Article  PubMed  CAS  Google Scholar 

  32. Broillet A, Hantson J, Ruegg C, Messager T, Schneider M (2005) Assessment of microvascular perfusion changes in a rat breast tumor model using SonoVue to monitor the effects of different anti-angiogenic therapies. Acad Radiol 12(Suppl 1):S28–S33

    Article  PubMed  Google Scholar 

  33. Jain RK (1988) Determinants of tumor blood flow: a review. Cancer Res 48:2641–2658

    PubMed  CAS  Google Scholar 

  34. McGinley JN, Knott KK, Thompson HJ (2002) Semi-automated method of quantifying vasculature of 1-methyl-1-nitrosourea-induced rat mammary carcinomas using immunohistochemical detection. J Histochem Cytochem 50:213–222

    Article  PubMed  CAS  Google Scholar 

  35. Thompson HJ, McGinley JN, Knott KK, Spoelstra NS, Wolfe P (2002) Vascular density profile of rat mammary carcinomas induced by 1-methyl-1-nitrosourea: implications for the investigation of angiogenesis. Carcinogenesis 23:847–854

    Article  PubMed  CAS  Google Scholar 

  36. Chantrain CF, DeClerck YA, Groshen S, McNamara G (2003) Computerized quantification of tissue vascularization using high-resolution slide scanning of whole tumor sections. J Histochem Cytochem 51:151–158

    Article  PubMed  CAS  Google Scholar 

  37. Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64:3731–3736

    Article  PubMed  CAS  Google Scholar 

  38. Gee MS, Procopio WN, Makonnen S, Feldman MD, Yeilding NM, Lee WM (2003) Tumor vessel development and maturation impose limits on the effectiveness of anti-vascular therapy. Am J Pathol 162:183–193

    Article  PubMed  Google Scholar 

  39. Kerbel RS, Kamen BA (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4:423–436

    Article  PubMed  CAS  Google Scholar 

  40. Denis F, Colas S, Chami L, Louisot P, Le Floch O, Tranquart F, Bougnoux P (2003) Changes in tumor vascularization after irradiation, anthracycline, or antiangiogenic treatment in nitrosomethyl ureas-induced rat mammary tumors. Clin Cancer Res 9:4546–4552

    PubMed  CAS  Google Scholar 

  41. Alcazar JL, Jurado M (1999) Transvaginal color Doppler for predicting pathological response to preoperative chemoradiation in locally advanced cervical carcinoma: a preliminary study. Ultrasound Med Biol 25:1041–1045

    Article  PubMed  CAS  Google Scholar 

  42. Alcazar JL, Castillo G, Martinez-Monge R, Jurado M (2004) Transvaginal color Doppler sonography for predicting response to concurrent chemoradiotherapy for locally advanced cervical carcinoma. J Clin Ultrasound 32:267–272

    Article  PubMed  Google Scholar 

  43. Peters-Engl C, Frank W, Leodolter S, Medl M (1999) Tumor flow in malignant breast tumors measured by Doppler ultrasound: an independent predictor of survival. Breast Cancer Res Treat 54:65–71

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments and Financial Support

We thank Dr Jean-François Tournamille and his team for the gift of docetaxel and their help to prepare docetaxel syringes at the Hospital “Bretonneau,” CHRU Tours. We thank Thierry Hardy for designing script under Matlab and Laura Brullé for vascular casting scan acquisition. We also thank Jérôme Montharu, Georges Roseau and Valérie Schubnel, for helping with animal care. This work was funded by “Ligue Nationale contre le Cancer” (Comités d’Indre et Loire, Loir et Cher, Indre), by “Cancéropôle Grand Ouest,” by “Institut National de la Santé et de la Recherche Médicale” (Inserm), by «Fonds Européens de Développement Régional» (FEDER), and by the “Association pour la Recherche sur le Cancer.” Sophie Vibet was the recipient of a fellowship from the “Ministère de l’Enseignement Supérieur et de la Recherche” and from the “Ligue Nationale contre le Cancer” (Comité de Charente). Caroline Goupille was supported by the University Hospital “Bretonneau,” Tours, and Sophie Serrière by a grant from INCA (Institut National du cancer, Cancéropôle Grand Ouest).

Conflicts of Interest

Authors have no financial relationship with the organization that sponsored the research. Although Dr. F. Tranquart is currently employed by Bracco (Switzerland), he was a full time employee of the Inserm/CHRU Bretonneau (Tours) in the course of the work reported in this article. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Goupille.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahéo, K., Chevalier, S., Vibet, S. et al. Non-invasive quantification of tumor vascular architecture during docetaxel-chemotherapy. Breast Cancer Res Treat 134, 1013–1025 (2012). https://doi.org/10.1007/s10549-012-2015-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2015-7

Keywords

Navigation