Skip to main content

Advertisement

Log in

The biological correlates of macroscopic breast tumour structure measured using fractal analysis in patients undergoing neoadjuvant chemotherapy

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Breast cancers are evolving, multi-scale systems that are characterized by varied complex spatial structures. In this study, we measured the structural characteristics of 33 breast tumours in patients who were to receive neoadjuvant chemotherapy using dynamic contrast enhanced MRI and fractal geometry. The results showed a significant association between fractal measurements and tumour characteristics. The fractal dimension was associated with receptor status (ER and PR) and the fractal fit was associated with response to chemotherapy, measured using a validated pathological response scale, tumour grade and size. This study describes structure measures that may be a consequence of known prognostic factors during the initial and/or maturation phase of tumour growth. These results suggest that measuring tumour structure in this way can predict an individual’s response to neoadjuvant therapy and may identify those who will benefit least from neoadjuvant chemotherapy, allowing alternative treatment options to be selected in those patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Mandelbrot BB (1983) The Fractal Geometry of Nature. W.H. Freeman, San Francisco

    Google Scholar 

  2. George LE, Sager KH (2007) Breast cancer diagnosis using multi-fractal dimension spectra. IEEE international conference on: signal processing and communications, 2007. ICSPC 2007, Dubai, pp 592–595

  3. Garra BS, Krasner BH, Horii SC et al (1993) Improving the distinction between benign and malignant breast-lesions—the value of sonographic texture analysis. Ultrason Imaging 15:267–285

    Article  PubMed  CAS  Google Scholar 

  4. Byng JW, Boyd NF, Fishell E et al (1996) Automated analysis of mammographic densities. Phys Med Biol 41:909–923

    Article  PubMed  CAS  Google Scholar 

  5. Losa GA, Nonnenmacher TF (1996) Self similarity and fractal irregularity in pathologic tissues. Mod Pathol 9:174–182

    PubMed  CAS  Google Scholar 

  6. Rose CJ, Mills SJ, O’Connor JPB et al (2009) Quantifying spatial heterogeneity in dynamic contrast-enhanced MRI parameter maps. Magn Reson Med 62:488–499

    Article  PubMed  Google Scholar 

  7. Di Ieva A, Grizzi F, Tschabitscher M et al (2010) Correlation of microvascular fractal dimension with positron emission tomography [(11)C]-methionine uptake in glioblastoma multiforme: preliminary findings. Microvasc Res 80:267–273

    Article  PubMed  Google Scholar 

  8. Jacquemier JD, Penault-Llorca FM, Bertucci F et al (1998) Angiogenesis as a prognostic marker in breast carcinoma with conventional adjuvant chemotherapy: a multiparametric and immunohistochemical analysis. J Pathol 184:130–135

    Article  PubMed  CAS  Google Scholar 

  9. Tynninen O, Sjostrom J, von Boguslawski K et al (2002) Tumour microvessel density as predictor of chemotherapy response in breast cancer patients. Br J Cancer 86:1905–1908

    Article  PubMed  CAS  Google Scholar 

  10. Semple SIK, Gilbert FJ, Redpath TW et al (2004) The relationship between vascular and metabolic characteristics of primary breast tumours. Eur Radiol 14:2038–2045

    Article  PubMed  Google Scholar 

  11. Semple SIK, Staff RT, Heys SD et al (2006) Baseline MRI delivery characteristics predict change in invasive ductal breast carcinoma PET metabolism as a result of primary chemotherapy administration. Ann Oncol 17:1393–1398

    Article  PubMed  CAS  Google Scholar 

  12. Tambasco M, Eliasziw M, Magliocco AM (2010) Morphologic complexity of epithelial architecture for predicting invasive breast cancer survival. J Transl Med 8:140

    Article  PubMed  Google Scholar 

  13. Tofts PS, Berkowitz B, Schnall MD (1995) Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumours using a permeability model. J Magn Reson Med 33:564–568

    Google Scholar 

  14. Brix G, Semmler W, Port R et al (1991) Pharmacokinetic parameters in Cns Gd-Dtpa enhanced MR imaging. J Comput Assist Tomogr 15:621–628

    Article  PubMed  CAS  Google Scholar 

  15. Hayes C, Padhani A, Leach M (2002) Assessing changes in tumour vascular function using dynamic contrast-enhanced magnetic resonance imaging RID C-2248-2008. NMR Biomed 15:154–163

    Article  PubMed  Google Scholar 

  16. Alic L, Veenland J, van Vliet M et al (2006) Quantification of heterogeneity in dynamic contrast enhanced MRI data for tumor treatment assessment. 2006 3rd IEEE International symposium on biomedical imaging: Macro to Nano, vol 1–3, pp 944–947

  17. Yang X, Knopp MV (2011) Quantifying tumor vascular heterogeneity with dynamic contrast-enhanced magnetic resonance imaging: a review. J Biomed Biotechnol 732848

  18. Mussurakis S, Gibbs P, Horsman A (1998) Primary breast abnormalities: selective pixel sampling on dynamic gadolinium-enhanced MR images. Radiology 206:465–473

    PubMed  CAS  Google Scholar 

  19. Wardlaw G, Wong R, Noseworthy MD (2008) Identification of intratumour low frequency microvascular components via BOLD signal fractal dimension mapping. Physica Med 24:87–91

    Article  Google Scholar 

  20. Barrett T, Brechbiel M, Bernardo M et al (2007) MRI of tumor angiogenesis. J Magn Reson Imaging 26:235–249

    Article  PubMed  Google Scholar 

  21. Alvarenga AV, Pereira WCA, Infantosi AFC, Azevedo CM (2007) Classifying breast tumours on ultrasound images using a hybrid classifier and texture features. International symposium on intelligent signal processing, 2007. WISP 2007. IEEE, Alcala de Henares, pp 1–6

  22. Risser L, Plouraboue F, Steyer A et al (2007) From homogeneous to fractal normal and tumorous microvascular networks in the brain. J Cereb Blood Flow Metab 27:293–303

    Article  PubMed  Google Scholar 

  23. O’Connor JPB, Rose CJ, Jackson A et al (2011) DCE-MRI biomarkers of tumour heterogeneity predict CRC liver metastasis shrinkage following bevacizumab and FOLFOX-6. Br J Cancer 105:139–145

    Article  PubMed  Google Scholar 

  24. Fisher B, Bryant J, Wolmark N et al (1998) Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol 16:2672–2685

    PubMed  CAS  Google Scholar 

  25. Smith IC, Heys SD, Hutckeon AW et al (2002) Neoadjuvant chemotherapy in breast cancer: significantly enhanced response with docetaxel. J Clin Oncol 20:1456–1466

    Article  PubMed  CAS  Google Scholar 

  26. Leake R (2000) Detection of the oestrogen receptor (ER): immunohistochemical versus cytosol measurements. Eur J Cancer 36:S18–S19

    Article  PubMed  CAS  Google Scholar 

  27. Paik S, Bryant J, Tan-Chiu E et al (2002) Real-world performance of HER2 testing—national surgical adjuvant breast and bowel project experience. J Natl Cancer Inst 94:852–854

    Article  PubMed  Google Scholar 

  28. Ogston KN, Miller ID, Payne S et al (2003) A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. Breast 12:320–327

    Article  PubMed  Google Scholar 

  29. Hulka B (1996) Epidemiology of susceptibility to breast cancer. Prog Clin Biol Res 395:159–174

    PubMed  CAS  Google Scholar 

  30. Semple S, Gilbert F, Redpath T et al (2003) Correlation of MRI/PET rim enhancement in breast cancer: A delivery related phenomenon with therapy implications? Lancet Oncol 4:759

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Data acquisition was funded by EPSRC and the Chief Scientist Office (Scotland). Di Giovanni P was funded by Philips Medical Systems; Semple SIK was funded by EPSRC; Gilbert FJ partly funded by the MRC and CRUK.

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. T. Staff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Giovanni, P., Ahearn, T.S., Semple, S.I.K. et al. The biological correlates of macroscopic breast tumour structure measured using fractal analysis in patients undergoing neoadjuvant chemotherapy. Breast Cancer Res Treat 133, 1199–1206 (2012). https://doi.org/10.1007/s10549-012-2014-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2014-8

Keywords

Navigation