Skip to main content

Advertisement

Log in

Fingolimod potentiates the effects of sunitinib malate in a rat breast cancer model

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Most of the antiangiogenic strategies used in oncology principally target endothelial cells through the vascular endothelial growth factor (VEGF) pathway. Multiple kinase inhibitors can secondarily reduce mural cell stabilization of the vessels by blocking platelet-derived growth factor receptor (PDGFR) activity. However, sphingosine-1-phosphate (S1P), which is also implicated in mural cell recruitment, has yet to be targeted in clinical practice. We therefore investigated the potential of a simultaneous blockade of the PDGF and S1P pathways on the chemotactic responses of vascular smooth muscle cells (VSMCs) and the resulting effects of this blockade on breast tumor growth. Due to crosstalk between the S1P and PDGF pathways, we used AG1296 and/or VPC-23019 to inhibit PDGFR-β and S1PR1/S1PR3 receptors, respectively. We showed that S1PR1 and S1PR3 are the principal receptors that mediate the S1P chemotactic signal on rat VSMCs and that they act synergistically with PDGFR-β during PDGF-B signaling. We also showed that simultaneous blockade of the PDGFR-β and S1PR1/S1PR3 signals had a synergistic effect, decreasing VSMC migration velocity toward endothelial cell and breast carcinoma cell-secreted cytokines by 65–90%. This blockade also strongly decreased the ability of VSMCs to form a three-dimensional cell network. Similar results were obtained with the combination of sunitinib malate (a VEGFR/PDGFR kinase inhibitor) and fingolimod (an S1P analog). Sunitinib malate is a clinically approved cancer treatment, whereas fingolimod is currently indicated only for treatment of multiple sclerosis. Orally administered, the combination of these drugs greatly decreased rat breast tumor growth in a syngeneic cancer model (Walker 256). This bi-therapy did not exert cumulative toxicity and histological analysis of the tumors revealed normalization of the tumor vasculature. The simultaneous blockade of these signaling pathways with sunitinib malate and fingolimod may provide an effective means of reducing tumor angiogenesis, and may improve the delivery of other chemotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Raza A, Franklin MJ, Dudek AZ (2010) Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am J Hematol 85(8):593–598

    Article  PubMed  CAS  Google Scholar 

  2. Mancuso MR, Davis R, Norberg SM, O’Brien S, Sennino B, Nakahara T, Yao VJ, Inai T, Brooks P, Freimark B et al (2006) Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest 116(10):2610–2621

    Article  PubMed  CAS  Google Scholar 

  3. Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111(9):1287–1295

    PubMed  CAS  Google Scholar 

  4. Maione P, Gridelli C, Troiani T, Ciardiello F (2006) Combining targeted therapies and drugs with multiple targets in the treatment of NSCLC. Oncologist 11(3):274–284

    Article  PubMed  CAS  Google Scholar 

  5. Tanski WJ, Nicholl SM, Kim D, Fegley AJ, Roztocil E, Davies MG (2005) Sphingosine-1-phosphate-induced smooth muscle cell migration involves the mammalian target of rapamycin. J Vasc Surg 41(1):91–98

    Article  PubMed  Google Scholar 

  6. Rajkumar VS, Shiwen X, Bostrom M, Leoni P, Muddle J, Ivarsson M, Gerdin B, Denton CP, Bou-Gharios G, Black CM et al (2006) Platelet-derived growth factor-beta receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing. Am J pathol 169(6):2254–2265

    Article  PubMed  CAS  Google Scholar 

  7. Banerjee S, Sengupta K, Dhar K, Mehta S, D’Amore PA, Dhar G, Banerjee SK et al (2006) Breast cancer cells secreted platelet-derived growth factor-induced motility of vascular smooth muscle cells is mediated through neuropilin-1. Mol Carcinog 45(11):871–880

    Article  PubMed  CAS  Google Scholar 

  8. Takuwa Y, Du W, Qi X, Okamoto Y, Takuwa N, Yoshioka K (2010) Roles of sphingosine-1-phosphate signaling in angiogenesis. World J Biol Chem 1(10):298–306

    Article  PubMed  Google Scholar 

  9. Pyne NJ, Pyne S (2010) Sphingosine 1-phosphate and cancer. Nat Rev Cancer 10(7):489–503

    Article  PubMed  CAS  Google Scholar 

  10. Hla T (2003) Signaling and biological actions of sphingosine 1-phosphate. Pharmacol Res 47(5):401–407

    Article  PubMed  CAS  Google Scholar 

  11. Hla T (2004) Physiological and pathological actions of sphingosine 1-phosphate. Semin Cell Dev Biol 15(5):513–520

    Article  PubMed  CAS  Google Scholar 

  12. Goparaju SK, Jolly PS, Watterson KR, Bektas M, Alvarez S, Sarkar S, Mel L, Ishii I, Chun J, Milstien S et al (2005) The S1P2 receptor negatively regulates platelet-derived growth factor-induced motility and proliferation. Mol Cell Biol 25(10):4237–4249

    Article  PubMed  CAS  Google Scholar 

  13. Shimizu T, Nakazawa T, Cho A, Dastvan F, Shilling D, Daum G, Reidy MA (2007) Sphingosine 1-phosphate receptor 2 negatively regulates neointimal formation in mouse arteries. Circ Res 101(10):995–1000

    Article  PubMed  CAS  Google Scholar 

  14. Takashima S, Sugimoto N, Takuwa N, Okamoto Y, Yoshioka K, Takamura M, Takata S, Kaneko S, Takuwa Y (2008) G12/13 and Gq mediate S1P2-induced inhibition of Rac and migration in vascular smooth muscle in a manner dependent on Rho but not Rho kinase. Cardiovasc Res 79(4):689–697

    Article  PubMed  CAS  Google Scholar 

  15. Pyne NJ, Pyne S (2011) Receptor tyrosine kinase-G-protein-coupled receptor signalling platforms: out of the shadow? Trends Pharmacol Sci 32(8):443–450

    Article  PubMed  CAS  Google Scholar 

  16. Huwiler A, Pfeilschifter J (2008) New players on the center stage: sphingosine 1-phosphate and its receptors as drug targets. Biochem Pharmacol 75(10):1893–1900

    Article  PubMed  CAS  Google Scholar 

  17. Brinkmann V, Billich A, Baumruker T, Heining P, Schmouder R, Francis G, Aradhye S, Burtin P (2010) Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov 9(11):883–897

    Article  PubMed  CAS  Google Scholar 

  18. Graler MH, Goetzl EJ (2004) The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G-protein-coupled receptors. FASEB J 18(3):551–553

    PubMed  CAS  Google Scholar 

  19. Tonelli F, Lim KG, Loveridge C, Long J, Pitson SM, Tigyi G, Bittman R, Pyne S, Pyne NJ (2010) FTY720 and (S)-FTY720 vinylphosphonate inhibit sphingosine kinase 1 and promote its proteasomal degradation in human pulmonary artery smooth muscle, breast cancer and androgen-independent prostate cancer cells. Cell Signal 22(10):1536–1542

    Article  PubMed  CAS  Google Scholar 

  20. Nagaoka Y, Otsuki K, Fujita T, Uesato S (2008) Effects of phosphorylation of immunomodulatory agent FTY720 (fingolimod) on antiproliferative activity against breast and colon cancer cells. Biol Pharm Bull 31(6):1177–1181

    Article  PubMed  CAS  Google Scholar 

  21. Hung JH, Lu YS, Wang YC, Ma YH, Wang DS, Kulp SK, Muthusamy N, Byrd JC, Cheng AL, Chen CS (2008) FTY720 induces apoptosis in hepatocellular carcinoma cells through activation of protein kinase C delta signaling. Cancer Res 68(4):1204–1212

    Article  PubMed  CAS  Google Scholar 

  22. LaMontagne K, Littlewood-Evans A, Schnell C, O’Reilly T, Wyder L, Sanchez T, Probst B, Butler J, Wood A, Liau G et al (2006) Antagonism of sphingosine-1-phosphate receptors by FTY720 inhibits angiogenesis and tumor vascularization. Cancer Res 66(1):221–231

    Article  PubMed  CAS  Google Scholar 

  23. Takuwa N, Du W, Kaneko E, Okamoto Y, Yoshioka K, Takuwa Y (2011) Tumor-suppressive sphingosine-1-phosphate receptor-2 counteracting tumor-promoting sphingosine-1-phosphate receptor-1 and sphingosine kinase 1—Jekyll Hidden behind Hyde. Am J Cancer Res 1(4):460–481

    PubMed  CAS  Google Scholar 

  24. Roskoski R Jr (2007) Sunitinib: a VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochem Biophys Res Commun 356(2):323–328

    Article  PubMed  CAS  Google Scholar 

  25. Heath VL, Bicknell R (2009) Anticancer strategies involving the vasculature. Nat Rev Clin Oncol 6(7):395–404

    Article  PubMed  CAS  Google Scholar 

  26. Sachinidis A, Flesch M, Ko Y, Schror K, Bohm M, Dusing R, Vetter H (1995) Thromboxane A2 and vascular smooth muscle cell proliferation. Hypertension 26(5):771–780

    Article  PubMed  CAS  Google Scholar 

  27. Kwan HY, Huang Y, Yao X (2000) Store-operated calcium entry in vascular endothelial cells is inhibited by cGMP via a protein kinase G-dependent mechanism. J Biol Chem 275(10):6758–6763

    Article  PubMed  CAS  Google Scholar 

  28. Mousseau Y, Leclers D, Faucher-Durand K, Cook-Moreau J, Lia-Baldini AS, Rigaud M, Sturtz FG et al (2007) Improved agarose gel assay for quantification of growth factor-induced cell motility. Biotechniques 43(4):509–516

    Article  PubMed  CAS  Google Scholar 

  29. Li MJ, Bauer G, Michienzi A, Yee JK, Lee NS, Kim J, Li S, Castanotto D, Zaia J, Rossi JJ (2003) Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III-promoted anti-HIV RNAs. Mol Ther 8(2):196–206

    Article  PubMed  CAS  Google Scholar 

  30. Kaipparettu BA, Kuiatse I, Tak-Yee Chan B, Benny Kaipparettu M, Lee AV, Oesterreich S (2008) Novel egg white-based 3-D cell culture system. Biotechniques 45(2):165–168, 170–171

    Google Scholar 

  31. Skoura A, Sanchez T, Claffey K, Mandala SM, Proia RL, Hla T (2007) Essential role of sphingosine 1-phosphate receptor 2 in pathological angiogenesis of the mouse retina. J Clin Investig 117(9):2506–2516

    Article  PubMed  CAS  Google Scholar 

  32. Young N, Van Brocklyn JR (2007) Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. Differential effects of S1P2 on cell migration and invasiveness. Exp Cell Res 313(8):1615–1627

    Article  PubMed  CAS  Google Scholar 

  33. Cho H, Kozasa T, Bondjers C, Betsholtz C, Kehrl JH (2003) Pericyte-specific expression of Rgs5: implications for PDGF and EDG receptor signaling during vascular maturation. FASEB J 17(3):440–442

    PubMed  CAS  Google Scholar 

  34. Baudhuin LM, Jiang Y, Zaslavsky A, Ishii I, Chun J, Xu Y (2004) S1P3-mediated Akt activation and cross-talk with platelet-derived growth factor receptor (PDGFR). FASEB J 18(2):341–343

    PubMed  CAS  Google Scholar 

  35. Mollard S, Mousseau Y, Baaj Y, Richard L, Cook-Moreau J, Monteil J, Funalot B, Sturtz FG (2011) How can grafted breast cancer models be optimized? Cancer Biol Ther 12(10):855–864

    Google Scholar 

  36. Azuma H, Takahara S, Ichimaru N, Wang JD, Itoh Y, Otsuki Y, Morimoto J, Fukui R, Hoshiga M, Ishihara T et al (2002) Marked prevention of tumor growth and metastasis by a novel immunosuppressive agent, FTY720, in mouse breast cancer models. Cancer Res 62(5):1410–1419

    PubMed  CAS  Google Scholar 

  37. Murph M, Mills GB (2007) Targeting the lipids LPA and S1P and their signalling pathways to inhibit tumour progression. Expert Mol Med 9(28):1–18

    Google Scholar 

  38. Nakayama S, Uto Y, Tanimoto K, Okuno Y, Sasaki Y, Nagasawa H, Nakata E, Arai K, Momose K, Fujita T et al (2008) TX-2152: a conformationally rigid and electron-rich diyne analogue of FTY720 with in vivo antiangiogenic activity. Bioorganic medicinal chem 16(16):7705–7714

    Article  CAS  Google Scholar 

  39. Wamhoff BR, Lynch KR, Macdonald TL, Owens GK (2008) Sphingosine-1-phosphate receptor subtypes differentially regulate smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 28(8):1454–1461

    Article  PubMed  CAS  Google Scholar 

  40. Campbell NE, Greenaway J, Henkin J, Moorehead RA, Petrik J (2010) The thrombospondin-1 mimetic ABT-510 increases the uptake and effectiveness of cisplatin and paclitaxel in a mouse model of epithelial ovarian cancer. Neoplasia 12(3):275–283

    PubMed  CAS  Google Scholar 

  41. Huang G, Chen L (2010) Recombinant human endostatin improves anti-tumor efficacy of paclitaxel by normalizing tumor vasculature in Lewis lung carcinoma. J Cancer Res Clin Oncol 136(8):1201–1211

    Article  PubMed  CAS  Google Scholar 

  42. McGee MC, Hamner JB, Williams RF, Rosati SF, Sims TL, Ng CY, Gaber MW, Calabrese C, Wu J, Nathwani AC et al (2010) Improved intratumoral oxygenation through vascular normalization increases glioma sensitivity to ionizing radiation. Int J Radiat Oncol Biol Phys 76(5):1537–1545

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Marc Pignot producing the glass templates used in the agarose assay. This research project was supported by Fondation pour la Recherche Médicale (Comité Limousin).

Conflict of interest

The authors declare that they do not have financial relationships with any of the organizations that sponsored the research, and they do not have any other real or apparent conflict(s) of interest that may have a direct bearing on the subject matter of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck G. Sturtz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mousseau, Y., Mollard, S., Faucher-Durand, K. et al. Fingolimod potentiates the effects of sunitinib malate in a rat breast cancer model. Breast Cancer Res Treat 134, 31–40 (2012). https://doi.org/10.1007/s10549-011-1903-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1903-6

Keywords

Navigation