Skip to main content

Advertisement

Log in

Inhibition of EGFR phosphorylation in a panel of human breast cancer cells correlates with synergistic interactions between gefitinib and 5′-DFUR, the bioactive metabolite of Xeloda®

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Capecitabine (Xeloda®) is a prodrug of 5-FU used in the clinical management of advanced breast cancer. It is metabolized first in the liver by carboxylesterases to generate 5′-deoxy-5-flurocytidine ribose (5′-DFCR), which is subsequently converted to 5′-deoxy-5-fluorouridine ribose (5′-DFUR) by cytidine deaminase in tumour and normal tissues. The conversion of 5′-DFUR to the cytotoxic 5-FU, occurs primarily in the tumour and is catalyzed by thymidine phosphorylase (TP). Prior work in head and neck cancer showed that cell treatment with an inhibitor of the epidermal growth receptor (EGFR) gefitinib led to an increase in TP expression and sensitized them to 5′-DFUR. This work seeks to investigate the factors influencing the potency of gefitinib + 5′-DFUR combination. Here, we studied these factors in a panel of six human breast cancer cell lines, with varied levels of sensitivity to gefitinib. Our results first confirmed that 5′-DFUR potency linearly correlates with TP basal levels in the panel of cell lines. In contrast, the strength of the synergistic effect of the gefitinib + 5′-DFUR combination, as measured by their combination indices (CI) correlates with pEGFR percent inhibition and with the modulation of TP expression by gefitinib (as quantitated by TP fold change) rather than TP basal levels. The results, in toto, suggest that the extent of modulation of TP by gefitinib may be used as a predictor of tumour sensitivity to gefitinib + capecitabine/5′-DFUR combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rivera E (2010) Management of metastatic breast cancer monoheratpy options for patients resistant to anthracyclines and taxanes. Am J Clin Oncol 33:176–185

    PubMed  CAS  Google Scholar 

  2. Cassata A, Procoplo G, Alu M, Ferrari L, Ferrario E, Beretta E, Longarini R, Busto G, De Candis D, Bajetta E (2001) Capecitabine: indications and future perspectives in the treatment of metastatic colorectal and breast cancer. Tumori 87:364–371

    PubMed  CAS  Google Scholar 

  3. O’Shaughnessy J, Miles D, Vukelja S, Moiseyenko V, Ayoub JP, Cervantes G, Fumoleau P, Jones S, Lui WY, Mauriac L, Twelves C, Van Hazel G, Verma S, Leonard R (2002) Superior survival with capecitabine plus docetaxel combination therapy in anthracycline-pretreated patients with advanced breast cancer: phase III trial results. J Clin Oncol 20:2812–2823

    Article  PubMed  Google Scholar 

  4. Talbot DC, Moiseyenko V, Van Belle S, O’Reilly SM, Alba Conejo E, Ackland S, Eisenberg P, Melnychuk D, Pienkowski T, Burger HU, Laws S, Osterwalder B (2002) Randomised, phase II trial comparing oral capecitabine (Xeloda®) with paclitaxel in patients with metastatic/advanced breast cancer pretreated with anthracyclines. Br J Cancer 86:1367–1372

    Article  PubMed  CAS  Google Scholar 

  5. Miwa M, Ura M, Nishida M, Sawada N, Ishikawa T, Mori K, Shimma N, Umeda I, Ishitsuka H (1998) Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5-fluorouracil selectively in tumours by enzymes concentrated in human liver and cancer tissue. Eur J Cancer 34:1274–1281

    Article  PubMed  CAS  Google Scholar 

  6. Andreetta C, Puppin C, Minisini A, Valent F, Pegolo E, Damante G, Di Loreto C, Pizzolitto S, Pandolfi M, Fasola G, Piga A, Puglisi F (2009) Thymidine phosphorylase expression and benefit from capecitabine in patients with advanced breast cancer. Ann Oncol 20(2):265–271

    Article  PubMed  CAS  Google Scholar 

  7. Yu EJ, Lee Y, Rha SY, Kim TS, Chung HC, Oh BK, Yang WI, Noh SH, Jeung H-C (2008) Angiogenic factor thymidime phosphorylase increases cancer cell invasion activity in patients with gastric adenocarcinoma. Mol Cancer Res 6(10):1554–1566

    Article  PubMed  CAS  Google Scholar 

  8. Nishimura G, Terada I, Kobayashi T, Ninomiya I, Kitagawa H, Fushida S, Fujimura T, Kayahara M, Shimizu K, Ohta T, Miwa K (2002) Thymidine phosphorylase and dihydropyrimidine dehydrogenase levels in primary colorectal cancer show a relationship to clinical effects of 5-deoxy-5-fluorouridine as adjuvant chemotherapy. Oncol Rep 9:479–482

    PubMed  CAS  Google Scholar 

  9. ZZ MaT, Ji YB, Zhang Y, Yu YY, Liu BY, Yin HR, Lin YZ (2004) Correlation of thymidylate synthase, thymidine phosphorylase and dihydropyrimidine dehydrogenase with sensitivity of gastrointestinal cancer cells to 5-fluorouracil and 5-fluoro-2′-deoxyuridine. World J Gastroenterol 10:172–176

    Google Scholar 

  10. De Angelis P, Svendsrud DH, Kravik KL, Stokke T (2006) Cellular response to 5-fluorouracil (5-FU) in 5-FU-resistant colon cancer cell lines during treatment and recovery. Mol Cancer 5:20

    Article  PubMed  Google Scholar 

  11. Carreras CWSD (1995) The catalytic mechanism and structure of thymidylate synthase. Annu Rev Biochem 64:721–762

    Article  PubMed  CAS  Google Scholar 

  12. Morse DLGH, Payne CM, Gillies RJ (2005) Docetaxel induces cell death through mitotic catastrophe in human breast cancer cells. Mol Cancer Ther 4:1495–1504

    Article  PubMed  CAS  Google Scholar 

  13. Ishitsuka H (2000) Capecitabine: preclinical pharmacology studies. Invest New Drugs 18:343–354

    Article  PubMed  CAS  Google Scholar 

  14. Nadella P, Shapiro C, Otterson GA, Hauger M, Erdal S, Kraut E, Clinton S, Shah M, Stanek M, Monk P, Villalona-Calero MA (2002) Pharmacobiologically based scheduling of capecitabine and docetaxel results in antitumor activity in resistant human malignancies. J Clin Oncol 20:2616–2623

    Article  PubMed  CAS  Google Scholar 

  15. Sawada N, Ishikawa T, Fukase Y, Nishida M, Yoshikubo T, Ishitsuka H (1998) Induction of thymidine phosphorylase activity and enhancement of capecitabine efficacy by taxol/taxotere in human cancer xenografts. Clin Cancer Res 4:1013–1019

    PubMed  CAS  Google Scholar 

  16. Magne N, Fischel JL, Dubreuil A, Formento P, Ciccolini J, Formento JL, Tiffon C, Renee N, Marchetti S, Etienne MC, Milano G (2003) ZD1839 (Iressa) modifies the activity of key enzymes linked to fluoropyrimidine activity: rational basis for a new combination therapy with capecitabine. Clin Cancer Res 9:4735–4742

    PubMed  CAS  Google Scholar 

  17. Geyer CE, Forster J, Lindquist D (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355(26):2733–2743

    Article  PubMed  CAS  Google Scholar 

  18. Nair P (2005) Epidermal growth factor receptor family and its role in cancer progression. Curr Sci 88:890–898

    Google Scholar 

  19. Yarden Y, Shilo BZ (2007) SnapShot: EGFR signaling pathway. Cell 131(5):1018

    Article  PubMed  Google Scholar 

  20. Fischer OM, Hart S, Gschwind A, Ullrich A (2003) EGFR signal transactivation in cancer cells. Biochem Soc Trans 31(Pt 6):1203–1208

    Article  PubMed  CAS  Google Scholar 

  21. Lacroix M, Leclercq G (2004) Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat 83(3):249–289

    Article  PubMed  CAS  Google Scholar 

  22. Ethier SP, Mahacek ML, Gullick WJ, Frank TS, Weber BL (1993) Differential isolation of normal luminal mammary epithelial cells and breast cancer cells from primary and metastatic sites using selective media. Cancer Res 53(3):627–635

    PubMed  CAS  Google Scholar 

  23. Lasfargues EY, Coutinho WG, Redfield ES (1978) Isolation of two human tumor epithelial cell lines from solid breast carcinomas. J Natl Cancer Inst 61(4):967–978

    PubMed  CAS  Google Scholar 

  24. Engel LW, Young NA (1978) Human breast carcinoma cells in continuous culture: a review. Cancer Res 38(11 Pt 2):4327–4339

    PubMed  CAS  Google Scholar 

  25. Cailleau R, Olive M, Cruciger QV (1978) Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro 14(11):911–915

    Article  PubMed  CAS  Google Scholar 

  26. Chou T, Talalay P (1984) Quantitative analysis of dose-effects relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  PubMed  CAS  Google Scholar 

  27. Hamid R, Rotshteyn Y, Rabadi L, Parikh R, Bullock P (2004) Comparison of alamar blue and MTT assays for high through-put screening. Toxicol In Vitro 18(5):703–710

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Canadian Institute of Health Research for their financial support of the project (CIHR Operating Grant MOP-49440). In addition, we would like to express our gratitude to the Research Institute/McGill University Health Center and the McGill/Canadian Institute Health Research Drug development training Program for providing Maria Ait-Tihyaty with generous scholarships.

Conflict of interest

All authors declare that there are no conflicts of interest regarding this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand J. Jean-Claude.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ait-Tihyaty, M., Rachid, Z., Mihalcioiu, C. et al. Inhibition of EGFR phosphorylation in a panel of human breast cancer cells correlates with synergistic interactions between gefitinib and 5′-DFUR, the bioactive metabolite of Xeloda® . Breast Cancer Res Treat 133, 217–226 (2012). https://doi.org/10.1007/s10549-011-1756-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1756-z

Keywords

Navigation