Abstract
The purpose of this article is to comprehensively summarize the associations between carotenoids and breast cancer and quantitatively estimate their dose–response relationships. We searched PubMed, Embase, and Cochrane databases (from January 1982 to 1 May 2011) and the references of the relevant articles in English with sufficient information to estimate relative risk or odds ratio and the 95% confidence intervals, and comparable categories of carotenoids. Two reviewers independently extracted data using a standardized form; with any discrepancy adjudicated by the third reviewer. 33 studies met the inclusion criteria. Comparing the highest with the lowest intake: dietary α-carotene intake significantly reduced the breast cancer risk by 9.0% (pooled RR = 0.91; 95% CI: 0.85–0.98; P = 0.01), dietary β-carotene intake reduced the risk by 6.0% (pooled RR = 0.94; 95% CI: 0.88–1.00; P = 0.05); total β-carotene intake reduced the risk by 5.0% (pooled RR = 0.95; 95% CI: 0.90–1.01; P = 0.08) when data from cohort studies were pooled. Significant dose–response relationships were observed in both the higher intake of dietary and total β-carotene with reduced breast cancer risk when data from cohort studies (P trend < 0.01, P trend = 0.03) and case–control studies (P trend < 0.01, P trend < 0.01) were pooled, respectively. Dietary α-carotene intake could reduce the breast cancer risk. The relationships between dietary and total β-carotene intake and breast cancer need to be confirmed. No significant association between dietary intake of β-cryptoxanthin, lutein/+zeaxanthin, and lycopene and breast cancer was observed.
This is a preview of subscription content, access via your institution.





References
Buell P (1973) Changing incidence of breast cancer in Japanese-American women. J Natl Cancer Inst 51(5):1479–1483
Thomas DB, Karagas MR (1987) Cancer in first and second generation Americans. Cancer Res 47(21):5771–5776
Armstrong B, Doll R (1975) Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices. Int J Cancer 15(4):617–631
Kelsey JL, Horn-Ross PL (1993) Breast cancer: magnitude of the problem and descriptive epidemiology. Epidemiol Rev 15(1):7–16
Chew BP, Brown CM, Park JS, Mixter PF (2003) Dietary lutein inhibits mouse mammary tumor growth by regulating angiogenesis and apoptosis. Anticancer Res 23(4):3333–3339
Cui Y, Lu Z, Bai L, Shi Z, Zhao WE, Zhao B (2007) Beta-carotene induces apoptosis and up-regulates peroxisome proliferator-activated receptor gamma expression and reactive oxygen species production in MCF-7 cancer cells. Eur J Cancer 43(17):2590–2601
Wang AH, Zhang LS (2007) Effect of lycopene on the proliferation of MCF-7 and MDA-MB-231 cells. Sichuan Da Xue Xue Bao Yi Xue Ban 38(6):958–960, 976
Gandini S, Merzenich H, Robertson C, Boyle P (2000) Meta-analysis of studies on breast cancer risk and diet: the role of fruit and vegetable consumption and the intake of associated micronutrients. Eur J Cancer 36(5):636–646
Druesne-Pecollo N, Latino-Martel P, Norat T, Barrandon E, Bertrais S, Galan P, Hercberg S (2010) Beta-carotene supplementation and cancer risk: a systematic review and metaanalysis of randomized controlled trials. Int J Cancer 127(1):172–184
Cho E, Spiegelman D, Hunter DJ, Chen WY, Zhang SM, Colditz GA, Willett WC (2003) Premenopausal intakes of vitamins A, C, and E, folate, and carotenoids, and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 12(8):713–720
Ronco A, De Stefani E, Boffetta P, Deneo-Pellegrini H, Mendilaharsu M, Leborgne F (1999) Vegetables, fruits, and related nutrients and risk of breast cancer: a case-control study in Uruguay. Nutr Cancer 35(2):111–119
Bohlke K, Spiegelman D, Trichopoulou A, Katsouyanni K, Trichopoulos D (1999) Vitamins A, C and E and the risk of breast cancer: results from a case-control study in Greece. Br J Cancer 79(1):23–29
Zhang S, Hunter DJ, Forman MR, Rosner BA, Speizer FE, Colditz GA, Manson JE, Hankinson SE, Willett WC (1999) Dietary carotenoids and vitamins A, C, and E and risk of breast cancer. J Natl Cancer Inst 91(6):547–556
Adzersen KH, Jess P, Freivogel KW, Gerhard I, Bastert G (2003) Raw and cooked vegetables, fruits, selected micronutrients, and breast cancer risk: a case-control study in Germany. Nutr Cancer 46(2):131–137
Levi F, Pasche C, Lucchini F, La Vecchia C (2001) Dietary intake of selected micronutrients and breast-cancer risk. Int J Cancer 91(2):260–263
Do MH, Lee SS, Jung PJ, Lee MH (2003) Intake of dietary fat and vitamin in relation to breast cancer risk in Korean women: a case-control study. J Korean Med Sci 18(4):534–540
Wang C, Baumgartner RN, Yang D, Slattery ML, Murtaugh MA, Byers T, Hines LM, Giuliano AR, Baumgartner KB (2009) No evidence of association between breast cancer risk and dietary carotenoids, retinols, vitamin C and tocopherols in Southwestern Hispanic and non-Hispanic White women. Breast Cancer Res Treat 114(1):137–145
Challier B, Perarnau JM, Viel JF (1998) Garlic, onion and cereal fibre as protective factors for breast cancer: a French case-control study. Eur J Epidemiol 14(8):737–747
Cui Y, Shikany JM, Liu S, Shagufta Y, Rohan TE (2008) Selected antioxidants and risk of hormone receptor-defined invasive breast cancers among postmenopausal women in the Women’s Health Initiative Observational Study. Am J Clin Nutr 87(4):1009–1018
Terry P, Jain M, Miller AB, Howe GR, Rohan TE (2002) Dietary carotenoids and risk of breast cancer. Am J Clin Nutr 76(4):883–888
Gaudet MM, Britton JA, Kabat GC, Steck-Scott S, Eng SM, Teitelbaum SL, Terry MB, Neugut AI, Gammon MD (2004) Fruits, vegetables, and micronutrients in relation to breast cancer modified by menopause and hormone receptor status. Cancer Epidemiol Biomarkers Prev 13(9):1485–1494
Mannisto S, Pietinen P, Virtanen M, Kataja V, Uusitupa M (1999) Diet and the risk of breast cancer in a case-control study: does the threat of disease have an influence on recall bias? J Clin Epidemiol 52(5):429–439
Mignone LI, Giovannucci E, Newcomb PA, Titus-Ernstoff L, Trentham-Dietz A, Hampton JM, Willett WC, Egan KM (2009) Dietary carotenoids and the risk of invasive breast cancer. Int J Cancer 124(12):2929–2937
Nagel G, Linseisen J, van Gils CH, Peeters PH, Boutron-Ruault MC, Clavel-Chapelon F, Romieu I, Tjonneland A, Olsen A, Roswall N, Witt PM, Overvad K, Rohrmann S, Kaaks R, Drogan D, Boeing H, Trichopoulou A, Stratigakou V, Zylis D, Engeset D, Lund E, Skeie G, Berrino F, Grioni S, Mattiello A, Masala G, Tumino R, Zanetti R, Ros MM, Bueno-de-Mesquita HB, Ardanaz E, Sanchez MJ, Huerta JM, Amiano P, Rodriguez L, Manjer J, Wirfalt E, Lenner P, Hallmans G, Spencer EA, Key TJ, Bingham S, Khaw KT, Rinaldi S, Slimani N, Boffetta P, Gallo V, Norat T, Riboli E (2010) Dietary beta-carotene, vitamin C and E intake and breast cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Breast Cancer Res Treat 119(3):753–765
Potischman N, Swanson CA, Coates RJ, Gammon MD, Brogan DR, Curtin J, Brinton LA (1999) Intake of food groups and associated micronutrients in relation to risk of early-stage breast cancer. Int J Cancer 82(3):315–321
Nkondjock A, Ghadirian P (2004) Intake of specific carotenoids and essential fatty acids and breast cancer risk in Montreal, Canada. Am J Clin Nutr 79(5):857–864
Huang JP, Zhang M, Holman CD, Xie X (2007) Dietary carotenoids and risk of breast cancer in Chinese women. Asia Pac J Clin Nutr 16(Suppl 1):437–442
Sesso HD, Buring JE, Zhang SM, Norkus EP, Gaziano JM (2005) Dietary and plasma lycopene and the risk of breast cancer. Cancer Epidemiol Biomarkers Prev 14(5):1074–1081
Larsson SC, Bergkvist L, Wolk A (2010) Dietary carotenoids and risk of hormone receptor-defined breast cancer in a prospective cohort of Swedish women. Eur J Cancer 46(6):1079–1085
Berlin JA, Longnecker MP, Greenland S (1993) Meta-analysis of epidemiologic dose-response data. Epidemiology 4(3):218–228
Chene G, Thompson SG (1996) Methods for summarizing the risk associations of quantitative variables in epidemiologic studies in a consistent form. Am J Epidemiol 144(6):610–621
Trock BJ, Hilakivi-Clarke L, Clarke R (2006) Meta-analysis of soy intake and breast cancer risk. J Natl Cancer Inst 98(7):459–471
Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560
Fleiss JL (1993) The statistical basis of meta-analysis. Stat Methods Med Res 2(2):121–145
Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634
Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50(4):1088–1101
Negri E, La Vecchia C, Franceschi S, D’Avanzo B, Talamini R, Parpinel M, Ferraroni M, Filiberti R, Montella M, Falcini F, Conti E, Decarli A (1996) Intake of selected micronutrients and the risk of breast cancer. Int J Cancer 65(2):140–144
Zaridze D, Lifanova Y, Maximovitch D, Day NE, Duffy SW (1991) Diet, alcohol consumption and reproductive factors in a case-control study of breast cancer in Moscow. Int J Cancer 48(4):493–501
Richardson S, Gerber M, Cenee S (1991) The role of fat, animal protein and some vitamin consumption in breast cancer: a case control study in southern France. Int J Cancer 48(1):1–9
Lee HP, Gourley L, Duffy SW, Esteve J, Lee J, Day NE (1991) Dietary effects on breast-cancer risk in Singapore. Lancet 337(8751):1197–1200
Levi F, La Vecchia C, Gulie C, Negri E (1993) Dietary factors and breast cancer risk in Vaud, Switzerland. Nutr Cancer 19(3):327–335
La Vecchia C, Decarli A, Franceschi S, Gentile A, Negri E, Parazzini F (1987) Dietary factors and the risk of breast cancer. Nutr Cancer 10(4):205–214
Freudenheim JL, Marshall JR, Vena JE, Laughlin R, Brasure JR, Swanson MK, Nemoto T, Graham S (1996) Premenopausal breast cancer risk and intake of vegetables, fruits, and related nutrients. J Natl Cancer Inst 88(6):340–348
Rohan TE, McMichael AJ, Baghurst PA (1988) A population-based case-control study of diet and breast cancer in Australia. Am J Epidemiol 128(3):478–489
Van ‘t Veer P, Kolb CM, Verhoef P, Kok FJ, Schouten EG, Hermus RJ, Sturmans F (1990) Dietary fiber, beta-carotene and breast cancer: results from a case-control study. Int J Cancer 45(5):825–828
Ewertz M, Gill C (1990) Dietary factors and breast-cancer risk in Denmark. Int J Cancer 46(5):779–784
Iscovich JM, Iscovich RB, Howe G, Shiboski S, Kaldor JM (1989) A case-control study of diet and breast cancer in Argentina. Int J Cancer 44(5):770–776
Verhoeven DT, Assen N, Goldbohm RA, Dorant E, van ‘t Veer P, Sturmans F, Hermus RJ, van den Brandt PA (1997) Vitamins C and E, retinol, beta-carotene and dietary fibre in relation to breast cancer risk: a prospective cohort study. Br J Cancer 75(1):149–155
Shibata A, Paganini-Hill A, Ross RK, Henderson BE (1992) Intake of vegetables, fruits, beta-carotene, vitamin C and vitamin supplements and cancer incidence among the elderly: a prospective study. Br J Cancer 66(4):673–679
Nishino H, Tokuda H, Murakoshi M, Satomi Y, Masuda M, Onozuka M, Yamaguchi S, Takayasu J, Tsuruta J, Okuda M, Khachik F, Narisawa T, Takasuka N, Yano M (2000) Cancer prevention by natural carotenoids. Biofactors 13(1–4):89–94
Maillard V, Hoinard C, Arab K, Jourdan ML, Bougnoux P, Chajes V (2006) Dietary beta-carotene inhibits mammary carcinogenesis in rats depending on dietary alpha-linolenic acid content. Br J Nutr 96(1):18–21
Reboul E, Thap S, Tourniaire F, Andre M, Juhel C, Morange S, Amiot MJ, Lairon D, Borel P (2007) Differential effect of dietary antioxidant classes (carotenoids, polyphenols, vitamins C and E) on lutein absorption. Br J Nutr 97(3):440–446
Burgess LC, Rice E, Fischer T, Seekins JR, Burgess TP, Sticka SJ, Klatt K (2008) Lycopene has limited effect on cell proliferation in only two of seven human cell lines (both cancerous and noncancerous) in an in vitro system with doses across the physiological range. Toxicol In Vitro 22(5):1297–1300
Gunasekera RS, Sewgobind K, Desai S, Dunn L, Black HS, McKeehan WL, Patil B (2007) Lycopene and lutein inhibit proliferation in rat prostate carcinoma cells. Nutr Cancer 58(2):171–177
Nagasawa H, Mitamura T, Sakamoto S, Yamamoto K (1995) Effects of lycopene on spontaneous mammary tumour development in SHN virgin mice. Anticancer Res 15(4):1173–1178
Sharoni Y, Giron E, Rise M, Levy J (1997) Effects of lycopene-enriched tomato oleoresin on 7,12-dimethyl-benz[a]anthracene-induced rat mammary tumors. Cancer Detect Prev 21(2):118–123
Cohen LA, Zhao Z, Pittman B, Khachik F (1999) Effect of dietary lycopene on N-methylnitrosourea-induced mammary tumorigenesis. Nutr Cancer 34(2):153–159
Musa-Veloso K, Card JW, Wong AW, Cooper DA (2009) Influence of observational study design on the interpretation of cancer risk reduction by carotenoids. Nutr Rev 67(9):527–545
Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56(2):455–463
Acknowledgment
The authors thank J. Love for reviewing the paper.
Conflict of interest
All authors read and approved the final manuscript. None of the authors had any conflicts of interest.
Author information
Authors and Affiliations
Corresponding authors
Electronic supplementary material
Below is the link to the electronic supplementary material.
Appendix
Appendix
Rights and permissions
About this article
Cite this article
Hu, F., Wang Yi, B., Zhang, W. et al. Carotenoids and breast cancer risk: a meta-analysis and meta-regression. Breast Cancer Res Treat 131, 239–253 (2012). https://doi.org/10.1007/s10549-011-1723-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10549-011-1723-8