Skip to main content


Log in

Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44+ human breast cancer cells

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript


The majority of breast cancer deaths are because of ineffective treatment of metastatic disease. We previously identified a subpopulation of cells in human breast cancer cell lines that demonstrate high activity of aldehyde dehydrogenase (ALDH) and high expression of CD44. These ALDHhiCD44+ cells displayed enhanced metastatic behavior in vitro and in vivo relative to ALDHlowCD44 cells. The goal of this study was to test the hypothesis that ALDHhiCD44+ breast cancer cells are more resistant to standard cancer therapy, and that inhibiting ALDH activity through all-trans retinoic acid (ATRA) or the specific ALDH inhibitor diethylaminobenzaldehyde (DEAB) sensitizes these cells to treatment. ALDHhiCD44+ and ALDHlowCD44 populations were isolated from MDA-MB-231 and MDA-MB-468 cells lines and exposed to chemotherapy (doxorubicin/paclitaxel) or radiotherapy ± ATRA or DEAB. Cell populations were assessed for differences in survival, colony formation, and protein expression related to therapy resistance and differentiation. Significantly more ALDHhiCD44+ cells survived chemotherapy/radiotherapy relative to ALDHlowCD44 cells (P < 0.001). Glutathione-S-transferase pi, p-glycoprotein, and/or CHK1 were overexpressed in ALDHhiCD44+ populations compared with ALDHlowCD44 populations (P < 0.05). Pre-treatment of cell populations with DEAB or ATRA had no effect on ALDHlowCD44 cells, but resulted in significant initial sensitization of ALDHhiCD44+ cells to chemotherapy/radiotherapy. However, only DEAB had a long-term effect, resulting in reduced colony formation (P < 0.01). ATRA also significantly increased expression of CK8/18/19 in MDA-MB-468 ALDHhiCD44+ cells compared with control (P < 0.05). Our novel findings indicate that ALDHhiCD44+ breast cancer cells contribute to both chemotherapy and radiation resistance and suggest a much broader role for ALDH in treatment response than previously reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others



7-Aminoactinomycin D


α-Minimum essential media


Aldehyde dehydrogenase




Acute promyelocytic leukemia


American type culture collection


Ataxia telangiectasia-mutated gene


All trans retinoic acid


Cluster of differentiation






Checkpoint protein 1


Checkpoint protein 2


Cytokeratin 8/18/19






Dulbecco’s Modified Eagle Medium/F12


Deoxyribonucleic acid


Enhanced chemiluminescence


Epithelial-to-mesenchymal transition


Estrogen receptor




Fluorescence-activated cell sorting


Fetal bovine serum


Fluorescein isothiocyanate


Glutathione-S-transferase pi




Michigan Cancer Foundation-7


MD Anderson-metastatic breast


Phospho-checkpoint protein 1


Phospho-checkpoint protein 2






Phenylmethylsulfonyl fluoride


Polyvinylidene fluoride


Phospho-Y-box binding protein


Retinoic acid


Retinoic acid receptor-α


Reactive oxygen species


Sodium dodecyl sulfate polyacrylamide gel electrophoresis


Standard error of the mean


Short tandem repeats


Tris-buffered saline + Tween-20


Y-box-binding protein


  1. Canadian Cancer Statistics (2010) Accessed 02 March 2011

  2. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300. doi:10.3322/caac.20073

    Article  PubMed  Google Scholar 

  3. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8):563–572

    Article  PubMed  CAS  Google Scholar 

  4. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988

    Article  PubMed  CAS  Google Scholar 

  5. Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B, Houvenaeghel G, Extra JM, Bertucci F, Jacquemier J, Xerri L, Dontu G, Stassi G, Xiao Y, Barsky SH, Birnbaum D, Viens P, Wicha MS (2010) Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 16(1):45–55. doi:10.1158/1078-0432.CCR-09-1630

    Article  PubMed  CAS  Google Scholar 

  6. Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, Hur MH, Diebel ME, Monville F, Dutcher J, Brown M, Viens P, Xerri L, Bertucci F, Stassi G, Dontu G, Birnbaum D, Wicha MS (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69:1302–1313. doi:10.1158/0008-5472.CAN-08-2741

    Article  PubMed  CAS  Google Scholar 

  7. Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA, Allan AL (2009) High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med 13(8B):2236–2252. doi:10.1111/j.1582-4934.2008.00455.x

    Article  PubMed  Google Scholar 

  8. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567

    Article  PubMed  CAS  Google Scholar 

  9. Vasiliou V, Nebert DW (2005) Analysis and update of the human aldehyde dehydrogenase (ALDH) gene family. Hum Genomics 2(2):138–143

    PubMed  CAS  Google Scholar 

  10. Moreno-Aspitia A, Perez EA (2009) Treatment options for breast cancer resistant to anthracycline and taxane. Mayo Clin Proc 84(6):533–545. doi:10.4065/84.6.533

    Article  PubMed  CAS  Google Scholar 

  11. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760. doi:10.1038/nature05236

    Article  PubMed  CAS  Google Scholar 

  12. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783. doi:10.1038/nature07733

    Article  PubMed  CAS  Google Scholar 

  13. Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98(24):1777–1785

    Article  PubMed  Google Scholar 

  14. Hong SP, Wen J, Bang S, Park S, Song SY (2009) CD44-positive cells are responsible for gemcitabine resistance in pancreatic cancer cells. Int J Cancer 125(10):2323–2331. doi:10.1002/ijc.24573

    Article  PubMed  CAS  Google Scholar 

  15. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67. doi:10.1186/1476-4598-5-67

    Article  PubMed  Google Scholar 

  16. Miletti-Gonzalez KE, Chen S, Muthukumaran N, Saglimbeni GN, Wu X, Yang J, Apolito K, Shih WJ, Hait WN, Rodriguez–Rodriguez L (2005) The CD44 receptor interacts with P-glycoprotein to promote cell migration and invasion in cancer. Cancer Res 65(15):6660–6667. doi:10.1158/0008-5472.CAN-04-3478

    Article  PubMed  CAS  Google Scholar 

  17. Wang J, Wakeman TP, Lathia JD, Hjelmeland AB, Wang XF, White RR, Rich JN, Sullenger BA (2009) Notch promotes radioresistance of glioma stem cells. Stem Cells 28(1):17–28. doi:10.1002/stem.261

    Google Scholar 

  18. Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY, Bapat SA (2009) Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 27(9):2059–2068. doi:10.1002/stem.154

    Article  PubMed  CAS  Google Scholar 

  19. Feldmann G, Dhara S, Fendrich V, Bedja D, Beaty R, Mullendore M, Karikari C, Alvarez H, Iacobuzio-Donahue C, Jimeno A, Gabrielson KL, Matsui W, Maitra A (2007) Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 67(5):2187–2196. doi:10.1158/0008-5472.CAN-06-3281

    Article  PubMed  CAS  Google Scholar 

  20. Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM (2007) WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci USA 104(2):618–623. doi:10.1073/pnas.0606599104

    Article  PubMed  CAS  Google Scholar 

  21. Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10(2):R25. doi:10.1186/bcr1982

    Article  PubMed  Google Scholar 

  22. Sladek NE (2003) Human aldehyde dehydrogenases: potential pathological, pharmacological, and toxicological impact. J Biochem Mol Toxicol 17(1):7–23. doi:10.1002/jbt.10057

    Article  PubMed  CAS  Google Scholar 

  23. Fenaux P, Castaigne S, Dombret H, Archimbaud E, Duarte M, Morel P, Lamy T, Tilly H, Guerci A, Maloisel F et al (1992) All-transretinoic acid followed by intensive chemotherapy gives a high complete remission rate and may prolong remissions in newly diagnosed acute promyelocytic leukemia: a pilot study on 26 cases. Blood 80(9):2176–2181

    PubMed  CAS  Google Scholar 

  24. Sanz MA, Lo-Coco F (2011) Modern approaches to treating acute promyelocytic leukemia. J Clin Oncol 29(5):495–503. doi:10.1200/JCO.2010.32.1067

    Article  PubMed  Google Scholar 

  25. Elizondo G, Corchero J, Sterneck E, Gonzalez FJ (2000) Feedback inhibition of the retinaldehyde dehydrogenase gene ALDH1 by retinoic acid through retinoic acid receptor alpha and CCAAT/enhancer-binding protein beta. J Biol Chem 275(50):39747–39753. doi:10.1074/jbc.M004987200

    Article  PubMed  CAS  Google Scholar 

  26. Moreb JS, Gabr A, Vartikar GR, Gowda S, Zucali JR, Mohuczy D (2005) Retinoic acid down-regulates aldehyde dehydrogenase and increases cytotoxicity of 4-hydroperoxycyclophosphamide and acetaldehyde. J Pharmacol Exp Ther 312(1):339–345. doi:10.1124/jpet.104.072496

    Article  PubMed  CAS  Google Scholar 

  27. Ginestier C, Wicinski J, Cervera N, Monville F, Finetti P, Bertucci F, Wicha MS, Birnbaum D, Charafe-Jauffret E (2009) Retinoid signaling regulates breast cancer stem cell differentiation. Cell Cycle 8(20):3297–3302

    Article  PubMed  CAS  Google Scholar 

  28. Price JE, Polyzos A, Zhang RD, Daniels LM (1990) Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res 50(3):717–721

    PubMed  CAS  Google Scholar 

  29. Nielsen D, Maare C, Skovsgaard T (1996) Cellular resistance to anthracyclines. Gen Pharmacol 27(2):251–255

    Article  PubMed  CAS  Google Scholar 

  30. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890. doi:10.1016/j.cell.2009.11.007

    Article  PubMed  CAS  Google Scholar 

  31. Kuwano M, Oda Y, Izumi H, Yang SJ, Uchiumi T, Iwamoto Y, Toi M, Fujii T, Yamana H, Kinoshita H, Kamura T, Tsuneyoshi M, Yasumoto K, Kohno K (2004) The role of nuclear Y-box binding protein 1 as a global marker in drug resistance. Mol Cancer Ther 3(11):1485–1492

    PubMed  CAS  Google Scholar 

  32. Tanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y, Taguchi T, Tamaki Y, Noguchi S (2009) Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 15(12):4234–4241. doi:10.1158/1078-0432.CCR-08-1479

    Article  PubMed  CAS  Google Scholar 

  33. Kurebayashi J, Kanomata N, Moriya T, Kozuka Y, Watanabe M, Sonoo H (2010) Preferential antitumor effect of the Src inhibitor dasatinib associated with a decreased proportion of aldehyde dehydrogenase 1-positive cells in breast cancer cells of the basal B subtype. BMC Cancer 10:568. doi:10.1186/1471-2407-10-568

    Article  PubMed  Google Scholar 

  34. Bunting KD, Lindahl R, Townsend AJ (1994) Oxazaphosphorine-specific resistance in human MCF-7 breast carcinoma cell lines expressing transfected rat class 3 aldehyde dehydrogenase. J Biol Chem 269(37):23197–23203

    PubMed  CAS  Google Scholar 

  35. Moreb JS, Baker HV, Chang LJ, Amaya M, Lopez MC, Ostmark B, Chou W (2008) ALDH isozymes downregulation affects cell growth, cell motility and gene expression in lung cancer cells. Mol Cancer 7:87. doi:10.1186/1476-4598-7-87

    Article  PubMed  Google Scholar 

  36. Moreb JS, Maccow C, Schweder M, Hecomovich J (2000) Expression of antisense RNA to aldehyde dehydrogenase class-1 sensitizes tumor cells to 4-hydroperoxycyclophosphamide in vitro. J Pharmacol Exp Ther 293(2):390–396

    PubMed  CAS  Google Scholar 

  37. Moreb JS, Zucali JR, Ostmark B, Benson NA (2007) Heterogeneity of aldehyde dehydrogenase expression in lung cancer cell lines is revealed by Aldefluor flow cytometry-based assay. Cytometry B Clin Cytom 72(4):281–289. doi:10.1002/cyto.b.20161

    PubMed  Google Scholar 

  38. Montesinos P, Gonzalez JD, Gonzalez J, Rayon C, de Lisa E, Amigo ML, Ossenkoppele GJ, Penarrubia MJ, Perez-Encinas M, Bergua J, Deben G, Sayas MJ, de la Serna J, Ribera JM, Bueno J, Milone G, Rivas C, Brunet S, Lowenberg B, Sanz M (2010) Therapy-related myeloid neoplasms in patients with acute promyelocytic leukemia treated with all-trans-retinoic acid and anthracycline-based chemotherapy. J Clin Oncol 28(24):3872–3879. doi:10.1200/JCO.2010.29.2268

    Article  PubMed  CAS  Google Scholar 

  39. Sanz MA, Martin G, Gonzalez M, Leon A, Rayon C, Rivas C, Colomer D, Amutio E, Capote FJ, Milone GA, De La Serna J, Roman J, Barragan E, Bergua J, Escoda L, Parody R, Negri S, Calasanz MJ, Bolufer P (2004) Risk-adapted treatment of acute promyelocytic leukemia with all-trans-retinoic acid and anthracycline monochemotherapy: a multicenter study by the PETHEMA group. Blood 103(4):1237–1243. doi:10.1182/blood-2003-07-2462

    Article  PubMed  CAS  Google Scholar 

  40. Schinke C, Goel S, Bhagat TD, Zhou L, Mo Y, Gallagher R, Kabalka GW, Platanias LC, Verma A, Das B (2010) Design and synthesis of novel derivatives of all-trans retinoic acid demonstrate the combined importance of acid moiety and conjugated double bonds in its binding to PML-RAR-alpha oncogene in acute promyelocytic leukemia. Leuk Lymphoma 51(6):1108–1114. doi:10.3109/10428191003786766

    Article  PubMed  CAS  Google Scholar 

  41. Mangiarotti R, Danova M, Alberici R, Pellicciari C (1998) All-trans retinoic acid (ATRA)-induced apoptosis is preceded by G1 arrest in human MCF-7 breast cancer cells. Br J Cancer 77(2):186–191

    Article  PubMed  CAS  Google Scholar 

  42. Butler WB, Fontana JA (1992) Responses to retinoic acid of tamoxifen-sensitive and -resistant sublines of human breast cancer cell line MCF-7. Cancer Res 52(22):6164–6167

    PubMed  CAS  Google Scholar 

  43. Fontana JA, Mezu AB, Cooper BN, Miranda D (1990) Retinoid modulation of estradiol-stimulated growth and of protein synthesis and secretion in human breast carcinoma cells. Cancer Res 50(7):1997–2002

    PubMed  CAS  Google Scholar 

  44. Sutton LM, Warmuth MA, Petros WP, Winer EP (1997) Pharmacokinetics and clinical impact of all-trans retinoic acid in metastatic breast cancer: a phase II trial. Cancer Chemother Pharmacol 40(4):335–341

    Article  PubMed  CAS  Google Scholar 

  45. Budd GT, Adamson PC, Gupta M, Homayoun P, Sandstrom SK, Murphy RF, McLain D, Tuason L, Peereboom D, Bukowski RM, Ganapathi R (1998) Phase I/II trial of all-trans retinoic acid and tamoxifen in patients with advanced breast cancer. Clin Cancer Res 4(3):635–642

    PubMed  CAS  Google Scholar 

  46. Zhang M, Shoeb M, Goswamy J, Liu P, Xiao TL, Hogan D, Campbell GA, Ansari NH (2010) Overexpression of aldehyde dehydrogenase 1A1 reduces oxidation-induced toxicity in SH-SY5Y neuroblastoma cells. J Neurosci Res 88(3):686–694. doi:10.1002/jnr.22230

    PubMed  CAS  Google Scholar 

  47. Lawenda BD, Kelly KM, Ladas EJ, Sagar SM, Vickers A, Blumberg JB (2008) Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy? J Natl Cancer Inst 100(11):773–783. doi:10.1093/jnci/djn148

    Article  PubMed  CAS  Google Scholar 

Download references


We thank Kristin Chadwick for her invaluable advice and technical help with the FACS experiments. This work was supported in part by grants from the Ontario Institute of Cancer Research (#08NOV230), the Canada Foundation for Innovation (#13199), and the London Regional Cancer Program (to ALA). Alysha K. Croker is supported by a doctoral scholarship from the Canadian Institutes for Health Research (CIHR). Alison L. Allan is supported by a CIHR New Investigator Award and an Early Researcher Award from the Ontario Ministry of Research and Innovation.

Conflict of interests


Author information

Authors and Affiliations


Corresponding author

Correspondence to Alison L. Allan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croker, A.K., Allan, A.L. Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44+ human breast cancer cells. Breast Cancer Res Treat 133, 75–87 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: