Breast Cancer Research and Treatment

, Volume 130, Issue 2, pp 635–644 | Cite as

Elevated PCNA+ tumor-associated macrophages in breast cancer are associated with early recurrence and non-Caucasian ethnicity

  • Rita A. Mukhtar
  • Amy P. Moore
  • Onouwem Nseyo
  • Frederick L. Baehner
  • Alfred Au
  • Dan H. Moore
  • Patrick Twomey
  • Michael J. Campbell
  • Laura J. Esserman


African American and Hispanic women develop more triple negative breast cancer at younger ages than Caucasian women. The frequently observed association between race and socioeconomic status (SES) has confounded our understanding of the outcomes disparities seen in these groups. Given the association between inflammatory cells and high-grade, triple negative tumors, we sought to investigate whether differences in the presence of these cells varies by race. We evaluated breast tumor specimens for the presence PCNA+ tumor-associated macrophages (TAMs) in consecutive cases from a county hospital serving primarily un- or under-insured patients. All patients in this cohort had elevated PCNA + TAM levels. Higher PCNA + TAM counts were associated with hormone receptor (HR) negative tumors and non-Caucasian ethnicity. Hispanic women specifically had significantly higher PCNA + TAM counts than Caucasian patients and shorter disease-free survival. These findings implicate immune function in the development of aggressive breast cancer and suggest a possible link between SES and the inflammatory response.


Tumor-associated macrophage Breast cancer Prognosis Outcomes disparities 



We thank Doris Rivas for contributing to data collection. This work was supported by the California Breast Cancer Research Program (Post-doctoral fellowship 15FB-0108).

Conflict of interest

None of the authors have any conflicts of interest to report for this manuscript.


  1. 1.
    Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin. doi: 10.3322/caac.20073
  2. 2.
    Zaloznik AJ (1995) Breast cancer stage at diagnosis: Caucasians versus Afro-Americans. Breast Cancer Res Treat 34(3):195–198PubMedCrossRefGoogle Scholar
  3. 3.
    Zaloznik AJ (1997) Breast cancer stage at diagnosis: Caucasians versus Hispanics. Breast Cancer Res Treat 42(2):121–124PubMedCrossRefGoogle Scholar
  4. 4.
    Patel TA, Colon-Otero G, Bueno Hume C, Copland JA III, Perez EA (2010) Breast cancer in Latinas: gene expression, differential response to treatments, and differential toxicities in Latinas compared with other population groups. Oncologist 15(5):466–475. doi: 10.1634/theoncologist.2010-0004 PubMedCrossRefGoogle Scholar
  5. 5.
    Albain KS, Unger JM, Crowley JJ, Coltman CA Jr, Hershman DL (2009) Racial disparities in cancer survival among randomized clinical trials patients of the Southwest Oncology Group. J Natl Cancer Inst 101(14):984–992. doi: 10.1093/jnci/djp175 PubMedCrossRefGoogle Scholar
  6. 6.
    Newman LA, Griffith KA, Jatoi I, Simon MS, Crowe JP, Colditz GA (2006) Meta-analysis of survival in African American and white American patients with breast cancer: ethnicity compared with socioeconomic status. J Clin Oncol 24(9):1342–1349. doi: 10.1200/JCO.2005.03.3472 PubMedCrossRefGoogle Scholar
  7. 7.
    Dunn BK, Agurs-Collins T, Browne D, Lubet R, Johnson KA (2010) Health disparities in breast cancer: biology meets socioeconomic status. Breast Cancer Res Treat 121(2):281–292. doi: 10.1007/s10549-010-0827-x PubMedCrossRefGoogle Scholar
  8. 8.
    Baquet CR, Mishra SI, Commiskey P, Ellison GL, DeShields M (2008) Breast cancer epidemiology in blacks and whites: disparities in incidence, mortality, survival rates and histology. J Natl Med Assoc 100(5):480–488PubMedGoogle Scholar
  9. 9.
    Anderson WF, Rosenberg PS, Menashe I, Mitani A, Pfeiffer RM (2008) Age-related crossover in breast cancer incidence rates between black and white ethnic groups. J Natl Cancer Inst 100(24):1804–1814. doi: 10.1093/jnci/djn411 PubMedCrossRefGoogle Scholar
  10. 10.
    Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S, Deming SL, Geradts J, Cheang MC, Nielsen TO, Moorman PG, Earp HS, Millikan RC (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295(21):2492–2502. doi: 10.1001/jama.295.21.2492 PubMedCrossRefGoogle Scholar
  11. 11.
    Morris GJ, Naidu S, Topham AK, Guiles F, Xu Y, McCue P, Schwartz GF, Park PK, Rosenberg AL, Brill K, Mitchell EP (2007) Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients: a single-institution compilation compared with the National Cancer Institute’s Surveillance, Epidemiology, and End Results database. Cancer 110(4):876–884. doi: 10.1002/cncr.22836 PubMedCrossRefGoogle Scholar
  12. 12.
    Stark A, Kapke A, Schultz D, Brown R, Linden M, Raju U (2008) Advanced stages and poorly differentiated grade are associated with an increased risk of HER2/neu positive breast carcinoma only in White women: findings from a prospective cohort study of African-American and White-American women. Breast Cancer Res Treat 107(3):405–414. doi: 10.1007/s10549-007-9560-5 PubMedCrossRefGoogle Scholar
  13. 13.
    Lund MJ, Butler EN, Bumpers HL, Okoli J, Rizzo M, Hatchett N, Green VL, Brawley OW, Oprea-Ilies GM, Gabram SG (2008) High prevalence of triple-negative tumors in an urban cancer center. Cancer 113(3):608–615. doi: 10.1002/cncr.23569 PubMedCrossRefGoogle Scholar
  14. 14.
    Moran MS, Yang Q, Harris LN, Jones B, Tuck DP, Haffty BG (2008) Long-term outcomes and clinicopathologic differences of African-American versus white patients treated with breast conservation therapy for early-stage breast cancer. Cancer 113(9):2565–2574. doi: 10.1002/cncr.23881 PubMedCrossRefGoogle Scholar
  15. 15.
    Chlebowski RT, Chen Z, Anderson GL, Rohan T, Aragaki A, Lane D, Dolan NC, Paskett ED, McTiernan A, Hubbell FA, Adams-Campbell LL, Prentice R (2005) Ethnicity and breast cancer: factors influencing differences in incidence and outcome. J Natl Cancer Inst 97(6):439–448. doi: 10.1093/jnci/dji064 PubMedCrossRefGoogle Scholar
  16. 16.
    Hines LM, Risendal B, Slattery ML, Baumgartner KB, Giuliano AR, Byers T (2008) Differences in estrogen receptor subtype according to family history of breast cancer among Hispanic, but not non-Hispanic White women. Cancer Epidemiol Biomarkers Prev 17(10):2700–2706. doi: 10.1158/1055-9965.EPI-08-0504 PubMedCrossRefGoogle Scholar
  17. 17.
    Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, Rimoldi M, Biswas SK, Allavena P, Mantovani A (2008) Macrophage polarization in tumour progression. Semin Cancer Biol 18(5):349–355. doi: 10.1016/j.semcancer.2008.03.004 PubMedCrossRefGoogle Scholar
  18. 18.
    Porta C, Larghi P, Rimoldi M, Totaro MG, Allavena P, Mantovani A, Sica A (2009) Cellular and molecular pathways linking inflammation and cancer. Immunobiology 214(9–10):761–777. doi: 10.1016/j.imbio.2009.06.014 PubMedCrossRefGoogle Scholar
  19. 19.
    Hansen BD, Schmidt H, von der Maase H, Sjoegren P, Agger R, Hokland M (2006) Tumour-associated macrophages are related to progression in patients with metastatic melanoma following interleukin-2 based immunotherapy. Acta Oncol 45(4):400–405. doi: 10.1080/02841860500471798 PubMedCrossRefGoogle Scholar
  20. 20.
    Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T, Delaney A, Jones SJ, Iqbal J, Weisenburger DD, Bast MA, Rosenwald A, Muller-Hermelink HK, Rimsza LM, Campo E, Delabie J, Braziel RM, Cook JR, Tubbs RR, Jaffe ES, Lenz G, Connors JM, Staudt LM, Chan WC, Gascoyne RD (2010) Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med 362(10):875–885. doi: 10.1056/NEJMoa0905680 PubMedCrossRefGoogle Scholar
  21. 21.
    Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86(5):1065–1073. doi: 10.1189/jlb.0609385 PubMedCrossRefGoogle Scholar
  22. 22.
    Siveen KS, Kuttan G (2009) Role of macrophages in tumour progression. Immunol Lett 123(2):97–102. doi: 10.1016/j.imlet.2009.02.011 PubMedCrossRefGoogle Scholar
  23. 23.
    Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66(1):1–9. doi: 10.1016/j.critrevonc.2007.07.004 PubMedCrossRefGoogle Scholar
  24. 24.
    Mantovani A, Sica A, Locati M (2005) Macrophage polarization comes of age. Immunity 23(4):344–346. doi: 10.1016/j.immuni.2005.10.001 PubMedCrossRefGoogle Scholar
  25. 25.
    Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444. doi: 10.1038/nature07205 PubMedCrossRefGoogle Scholar
  26. 26.
    Talmadge JE, Donkor M, Scholar E (2007) Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev 26(3–4):373–400. doi: 10.1007/s10555-007-9072-0 PubMedCrossRefGoogle Scholar
  27. 27.
    Zhu X, Mulcahy LA, Mohammed RA, Lee AH, Franks HA, Kilpatrick L, Yilmazer A, Paish EC, Ellis IO, Patel PM, Jackson AM (2008) IL-17 expression by breast-cancer-associated macrophages: IL-17 promotes invasiveness of breast cancer cell lines. Breast Cancer Res 10(6):R95. doi: 10.1186/bcr2195 PubMedCrossRefGoogle Scholar
  28. 28.
    Van Ginderachter JA, Movahedi K, Hassanzadeh Ghassabeh G, Meerschaut S, Beschin A, Raes G, De Baetselier P (2006) Classical and alternative activation of mononuclear phagocytes: picking the best of both worlds for tumor promotion. Immunobiology 211(6–8):487–501. doi: 10.1016/j.imbio.2006.06.002 PubMedCrossRefGoogle Scholar
  29. 29.
    Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969. doi: 10.1038/nri2448 PubMedCrossRefGoogle Scholar
  30. 30.
    Balkwill F, Mantovani A (2010) Cancer and inflammation: implications for pharmacology and therapeutics. Clin Pharmacol Ther 87(4):401–406. doi: 10.1038/clpt.2009.312 PubMedCrossRefGoogle Scholar
  31. 31.
    Patsialou A, Wyckoff J, Wang Y, Goswami S, Stanley ER, Condeelis JS (2009) Invasion of human breast cancer cells in vivo requires both paracrine and autocrine loops involving the colony-stimulating factor-1 receptor. Cancer Res 69(24):9498–9506. doi: 10.1158/0008-5472.CAN-09-1868 PubMedCrossRefGoogle Scholar
  32. 32.
    Sica A, Schioppa T, Mantovani A, Allavena P (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42(6):717–727. doi: 10.1016/j.ejca.2006.01.003 PubMedCrossRefGoogle Scholar
  33. 33.
    Fujimoto H, Sangai T, Ishii G, Ikehara A, Nagashima T, Miyazaki M, Ochiai A (2009) Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer 125(6):1276–1284. doi: 10.1002/ijc.24378 PubMedCrossRefGoogle Scholar
  34. 34.
    Campbell MJ, Tonlaar NY, Garwood ER, Huo D, Moore DH, Khramtsov AI, Au A, Baehner F, Chen Y, Malaka DO, Lin A, Adeyanju OO, Li S, Gong C, McGrath M, Olopade OI, Esserman LJ (2010) Proliferating macrophages associated with high grade, HR negative breast cancer and poor clinical outcome. Breast Cancer Res Treat. doi: 10.1007/s10549-010-1154-y
  35. 35.
    Yaziji H, Taylor CR, Goldstein NS, Dabbs DJ, Hammond EH, Hewlett B, Floyd AD, Barry TS, Martin AW, Badve S, Baehner F, Cartun RW, Eisen RN, Swanson PE, Hewitt SM, Vyberg M, Hicks DG (2008) Consensus recommendations on estrogen receptor testing in breast cancer by immunohistochemistry. Appl Immunohistochem Mol Morphol 16(6):513–520. doi: 10.1097/PAI.0b013e31818a9d3a PubMedCrossRefGoogle Scholar
  36. 36.
    Martin DN, Boersma BJ, Yi M, Reimers M, Howe TM, Yfantis HG, Tsai YC, Williams EH, Lee DH, Stephens RM, Weissman AM, Ambs S (2009) Differences in the tumor microenvironment between African-American and European-American breast cancer patients. PLoS One 4(2):e4531. doi: 10.1371/journal.pone.0004531 PubMedCrossRefGoogle Scholar
  37. 37.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2005) Reporting recommendations for tumor marker prognostic studies. J Clin Oncol 23(36):9067–9072. doi: 10.1200/JCO.2004.01.0454 PubMedCrossRefGoogle Scholar
  38. 38.
    Qian B, Deng Y, Im JH, Muschel RJ, Zou Y, Li J, Lang RA, Pollard JW (2009) A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One 4(8):e6562. doi: 10.1371/journal.pone.0006562 PubMedCrossRefGoogle Scholar
  39. 39.
    Galmbacher K, Heisig M, Hotz C, Wischhusen J, Galmiche A, Bergmann B, Gentschev I, Goebel W, Rapp UR, Fensterle J (2010) Shigella mediated depletion of macrophages in a murine breast cancer model is associated with tumor regression. PLoS One 5(3):e9572. doi: 10.1371/journal.pone.0009572 PubMedCrossRefGoogle Scholar
  40. 40.
    Steele RJ, Eremin O, Brown M, Hawkins RA (1984) A high macrophage content in human breast cancer is not associated with favourable prognostic factors. Br J Surg 71(6):456–458PubMedCrossRefGoogle Scholar
  41. 41.
    Volodko NRA, Rudas M, Jakesz R (1998) Tumour-associated macrophages in breast cancer and their prognostic correlations. The Breast 7(2):99–105CrossRefGoogle Scholar
  42. 42.
    Leek RD, Hunt NC, Landers RJ, Lewis CE, Royds JA, Harris AL (2000) Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. J Pathol 190(4):430–436. doi: 10.1002/(SICI)1096-9896(200003)190:4<430:AID-PATH538>3.0.CO;2-6 PubMedCrossRefGoogle Scholar
  43. 43.
    Leek RD, Landers RJ, Harris AL, Lewis CE (1999) Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. Br J Cancer 79(5–6):991–995. doi: 10.1038/sj.bjc.6690158 PubMedCrossRefGoogle Scholar
  44. 44.
    Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56(20):4625–4629PubMedGoogle Scholar
  45. 45.
    Smith-Bindman R, Miglioretti DL, Lurie N, Abraham L, Barbash RB, Strzelczyk J, Dignan M, Barlow WE, Beasley CM, Kerlikowske K (2006) Does utilization of screening mammography explain racial and ethnic differences in breast cancer? Ann Intern Med 144(8):541–553PubMedGoogle Scholar
  46. 46.
    Setiawan VW, Monroe KR, Wilkens LR, Kolonel LN, Pike MC, Henderson BE (2009) Breast cancer risk factors defined by estrogen and progesterone receptor status: the multiethnic cohort study. Am J Epidemiol 169(10):1251–1259. doi: 10.1093/aje/kwp036 PubMedCrossRefGoogle Scholar
  47. 47.
    Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer 109(9):1721–1728. doi: 10.1002/cncr.22618 PubMedCrossRefGoogle Scholar
  48. 48.
    Gordon NH (1995) Association of education and income with estrogen receptor status in primary breast cancer. Am J Epidemiol 142(8):796–803PubMedGoogle Scholar
  49. 49.
    Thomson CS, Hole DJ, Twelves CJ, Brewster DH, Black RJ (2001) Prognostic factors in women with breast cancer: distribution by socioeconomic status and effect on differences in survival. J Epidemiol Community Health 55(5):308–315PubMedCrossRefGoogle Scholar
  50. 50.
    Tollerud DJ, Clark JW, Brown LM, Neuland CY, Pankiw-Trost LK, Blattner WA, Hoover RN (1989) The influence of age, race, and gender on peripheral blood mononuclear-cell subsets in healthy nonsmokers. J Clin Immunol 9(3):214–222PubMedCrossRefGoogle Scholar
  51. 51.
    Bain BJ (1996) Ethnic and sex differences in the total and differential white cell count and platelet count. J Clin Pathol 49(8):664–666PubMedCrossRefGoogle Scholar
  52. 52.
    Saxena S, Wong ET (1990) Heterogeneity of common hematologic parameters among racial, ethnic, and gender subgroups. Arch Pathol Lab Med 114(7):715–719PubMedGoogle Scholar
  53. 53.
    Soria G, Ben-Baruch A (2008) The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett 267(2):271–285. doi: 10.1016/j.canlet.2008.03.018 PubMedCrossRefGoogle Scholar
  54. 54.
    Watkins SK, Li B, Richardson KS, Head K, Egilmez NK, Zeng Q, Suttles J, Stout RD (2009) Rapid release of cytoplasmic IL-15 from tumor-associated macrophages is an initial and critical event in IL-12-initiated tumor regression. Eur J Immunol 39(8):2126–2135. doi: 10.1002/eji.200839010 PubMedCrossRefGoogle Scholar
  55. 55.
    Ward E, Jemal A, Cokkinides V, Singh GK, Cardinez C, Ghafoor A, Thun M (2004) Cancer disparities by race/ethnicity and socioeconomic status. CA Cancer J Clin 54(2):78–93PubMedCrossRefGoogle Scholar
  56. 56.
    Telli ML, Chang ET, Kurian AW, Keegan TH, McClure LA, Lichtensztajn D, Ford JM, Gomez SL (2010) Asian ethnicity and breast cancer subtypes: a study from the California Cancer Registry. Breast Cancer Res Treat. doi: 10.1007/s10549-010-1173-8
  57. 57.
    Fong M, Henson DE, Devesa SS, Anderson WF (2006) Inter- and intra-ethnic differences for female breast carcinoma incidence in the continental United States and in the state of Hawaii. Breast Cancer Res Treat 97(1):57–65. doi: 10.1007/s10549-005-9088-5 PubMedCrossRefGoogle Scholar
  58. 58.
    Kakarala M, Rozek L, Cote M, Liyanage S, Brenner DE (2010) Breast cancer histology and receptor status characterization in Asian Indian and Pakistani women in the U.S.—a SEER analysis. BMC Cancer 10:191. doi: 10.1186/1471-2407-10-191 PubMedCrossRefGoogle Scholar
  59. 59.
    Zakharia F, Basu A, Absher D, Assimes TL, Go AS, Hlatky MA, Iribarren C, Knowles JW, Li J, Narasimhan B, Sidney S, Southwick A, Myers RM, Quertermous T, Risch N, Tang H (2009) Characterizing the admixed African ancestry of African Americans. Genome Biol 10(12):R141. doi: 10.1186/gb-2009-10-12-r141 PubMedCrossRefGoogle Scholar
  60. 60.
    Root M (2003) The use of race in medicine as a proxy for genetic differences. Philos Sci 70(5):1173–1183PubMedCrossRefGoogle Scholar
  61. 61.
    Moldovan GL, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork. Cell 129(4):665–679. doi: 10.1016/j.cell.2007.05.003 PubMedCrossRefGoogle Scholar
  62. 62.
    Wang SC, Nakajima Y, Yu YL, Xia W, Chen CT, Yang CC, McIntush EW, Li LY, Hawke DH, Kobayashi R, Hung MC (2006) Tyrosine phosphorylation controls PCNA function through protein stability. Nat Cell Biol 8(12):1359–1368. doi: 10.1038/ncb1501 PubMedCrossRefGoogle Scholar
  63. 63.
    Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66(2):605–612. doi: 10.1158/0008-5472.CAN-05-4005 PubMedCrossRefGoogle Scholar
  64. 64.
    Griffiths L, Binley K, Iqball S, Kan O, Maxwell P, Ratcliffe P, Lewis C, Harris A, Kingsman S, Naylor S (2000) The macrophage—a novel system to deliver gene therapy to pathological hypoxia. Gene Ther 7(3):255–262. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  65. 65.
    Burdo TH, Soulas C, Orzechowski K, Button J, Krishnan A, Sugimoto C, Alvarez X, Kuroda MJ, Williams KC (2010) Increased monocyte turnover from bone marrow correlates with severity of SIV encephalitis and CD163 levels in plasma. PLoS Pathog 6(4):e1000842. doi: 10.1371/journal.ppat.1000842 PubMedCrossRefGoogle Scholar
  66. 66.
    Williams K, Schwartz A, Corey S, Orandle M, Kennedy W, Thompson B, Alvarez X, Brown C, Gartner S, Lackner A (2002) Proliferating cellular nuclear antigen expression as a marker of perivascular macrophages in simian immunodeficiency virus encephalitis. Am J Pathol 161(2):575–585. doi: 10.1016/S0002-9440(10)64213-7 PubMedCrossRefGoogle Scholar
  67. 67.
    Lan HY, Nikolic-Paterson DJ, Mu W, Atkins RC (1995) Local macrophage proliferation in the progression of glomerular and tubulointerstitial injury in rat anti-GBM glomerulonephritis. Kidney Int 48(3):753–760PubMedCrossRefGoogle Scholar
  68. 68.
    Dijkstra CD, Dopp EA, Joling P, Kraal G (1985) The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology 54(3):589–599PubMedGoogle Scholar
  69. 69.
    Aziz A, Soucie E, Sarrazin S, Sieweke MH (2009) MafB/c-Maf deficiency enables self-renewal of differentiated functional macrophages. Science 326(5954):867–871. doi: 10.1126/science.1176056 PubMedCrossRefGoogle Scholar
  70. 70.
    Watlington AT, Byers T, Mouchawar J, Sauaia A, Ellis J (2007) Does having insurance affect differences in clinical presentation between Hispanic and non-Hispanic white women with breast cancer? Cancer 109(10):2093–2099. doi: 10.1002/cncr.22640 PubMedCrossRefGoogle Scholar
  71. 71.
    Wojcik BE, Spinks MK, Stein CR (2003) Effects of screening mammography on the comparative survival rates of African American, white, and Hispanic beneficiaries of a comprehensive health care system. Breast J 9(3):175–183PubMedCrossRefGoogle Scholar
  72. 72.
    Rayson D, Payne JI, Abdolell M, Barnes PJ, MacIntosh RF, Foley T, Younis T, Burns A, Caines J (2011) Comparison of clinical-pathologic characteristics and outcomes of true interval and screen-detected invasive breast cancer among participants of a Canadian breast screening program: a nested case-control study. Clin Breast Cancer 11(1):27–32. doi: 10.3816/CBC.2011.n.005 PubMedGoogle Scholar
  73. 73.
    Eubank TD, Roberts RD, Khan M, Curry JM, Nuovo GJ, Kuppusamy P, Marsh CB (2009) Granulocyte macrophage colony-stimulating factor inhibits breast cancer growth and metastasis by invoking an anti-angiogenic program in tumor-educated macrophages. Cancer Res 69(5):2133–2140. doi: 10.1158/0008-5472.CAN-08-1405 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Rita A. Mukhtar
    • 1
  • Amy P. Moore
    • 1
  • Onouwem Nseyo
    • 1
  • Frederick L. Baehner
    • 1
  • Alfred Au
    • 1
  • Dan H. Moore
    • 1
  • Patrick Twomey
    • 1
  • Michael J. Campbell
    • 1
  • Laura J. Esserman
    • 1
  1. 1.University of California, San FranciscoSan FranciscoUSA

Personalised recommendations