Breast Cancer Research and Treatment

, Volume 128, Issue 1, pp 155–163 | Cite as

Multiple biomarker expression on circulating tumor cells in comparison to tumor tissues from primary and metastatic sites in patients with locally advanced/inflammatory, and stage IV breast cancer, using a novel detection technology

  • George Somlo
  • Sean K. Lau
  • Paul Frankel
  • H. Ben Hsieh
  • Xiaohe Liu
  • Lixin Yang
  • Robert Krivacic
  • Richard H. Bruce
Clinical trial

Abstract

Patients with locally advanced/inflammatory breast cancer (LABC/IBC) face a high likelyhood of recurrence and prognosis for relapsed, or de novo stage IV metastatic breast cancer (MBC) remains poor. Estrogen (ER) and HER2 receptor expression on primary or MBC allow targeted therapies, but an estimated 10–18% of tumors do not exhibit these biomarkers and survival in these cases is even poorer. Variations in discordance rates for the expression of ER and HER2 receptors have been observed between primary and metastatic tumors and such discordances may lead to suboptimal treatment. Circulating tumor cells (CTCs) are considered the seeds of residual disease and distant metastases and their characterization could help guide treatment selection. To explore this possibility, we used multiple biomarker assessment of CTCs in comparison to primary and metastatic tumor sites. Thirty-six patients with LABC/IBC, or stage IV MBC were evaluated. Blood samples were procured prior to initiating or changing therapy. CTCs were identified based on presence of cytokeratin and nucleus staining, and the absence of CD45. A multimarker assay was developed to simultaneously quantify expression of HER2, ER, and ERCC1, a DNA excision repair protein. Novel fiber-optic array scanning technology (FAST) was used for sensitive location of CTCs. CTCs were detected in 82% of MBC and 62% LABC/IBC cases. Multiplex marker expression was successfully carried out in samples from18 patients with MBC and in 8 patients with LABC/IBC that contained CTCs. In MBC, we detected actionable discordance rates of 40 and 23%, respectively for ER and HER2 where a biomarker was negative in the primary or metastatic tumor and positive in the CTCs. In LABC/IBC, actionable discordances were 60 and 20% for ER and HER2, respectively. Pilot trials evaluating the effectiveness of treatment selections based on actionable discordances between biomarker expression patterns on CTCs and primary or metastatic tumor sites may allow for a prospective assessment of CTC-based individualized targeted therapies.

Keywords

Breast cancer Circulating tumor cells HER2 ER ERCC1 Discordant protein expression 

References

  1. 1.
    Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300. doi:10.3322/caac.20073 PubMedCrossRefGoogle Scholar
  2. 2.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. doi:10.1038/35021093 PubMedCrossRefGoogle Scholar
  3. 3.
    Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13(15 Pt 1):4429–4434. doi:10.1158/1078-0432.CCR-06-3045 PubMedCrossRefGoogle Scholar
  4. 4.
    Chia SK, Speers CH, D’Yachkova Y, Kang A, Malfair-Taylor S, Barnett J, Coldman A, Gelmon KA, O’Reilly SE, Olivotto IA (2007) The impact of new chemotherapeutic and hormone agents on survival in a population-based cohort of women with metastatic breast cancer. Cancer 110(5):973–979. doi:10.1002/cncr.22867 PubMedCrossRefGoogle Scholar
  5. 5.
    Robert N, Leyland-Jones B, Asmar L, Belt R, Ilegbodu D, Loesch D, Raju R, Valentine E, Sayre R, Cobleigh M, Albain K, McCullough C, Fuchs L, Slamon D (2006) Randomized phase III study of trastuzumab, paclitaxel, and carboplatin compared with trastuzumab and paclitaxel in women with HER-2-overexpressing metastatic breast cancer. J Clin Oncol 24(18):2786–2792. doi:10.1200/JCO.2005.04.1764 PubMedCrossRefGoogle Scholar
  6. 6.
    Carlson RW, Allred DC, Anderson BO, Burstein HJ, Carter WB, Edge SB, Erban JK, Farrar WB, Goldstein LJ, Gradishar WJ, Hayes DF, Hudis CA, Jahanzeb M, Kiel K, Ljung BM, Marcom PK, Mayer IA, McCormick B, Nabell LM, Pierce LJ, Reed EC, Smith ML, Somlo G, Theriault RL, Topham NS, Ward JH, Winer EP, Wolff AC (2009) Breast cancer. Clinical practice guidelines in oncology. J Natl Compr Cancer Netw 7(2):122–192Google Scholar
  7. 7.
    Schneider BP, Winer EP, Foulkes WD, Garber J, Perou CM, Richardson A, Sledge GW, Carey LA (2008) Triple-negative breast cancer: risk factors to potential targets. Clin Cancer Res 14(24):8010–8018. doi:10.1158/1078-0432.CCR-08-1208 PubMedCrossRefGoogle Scholar
  8. 8.
    Sirohi B, Arnedos M, Popat S, Ashley S, Nerurkar A, Walsh G, Johnston S, Smith IE (2008) Platinum-based chemotherapy in triple-negative breast cancer. Ann Oncol 19(11):1847–1852. doi:10.1093/annonc/mdn395 PubMedCrossRefGoogle Scholar
  9. 9.
    Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, Li Q, Juul N, Leong CO, Calogrias D, Buraimoh A, Fatima A, Gelman RS, Ryan PD, Tung NM, De Nicolo A, Ganesan S, Miron A, Colin C, Sgroi DC, Ellisen LW, Winer EP, Garber JE (2010) Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J Clin Oncol 28(7):1145–1153. doi:10.1200/JCO.2009.22.4725 PubMedCrossRefGoogle Scholar
  10. 10.
    Olaussen KA, Dunant A, Fouret P, Brambilla E, Andre F, Haddad V, Taranchon E, Filipits M, Pirker R, Popper HH, Stahel R, Sabatier L, Pignon JP, Tursz T, Le Chevalier T, Soria JC, Investigators IB (2006) DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 355(10):983–991. doi:10.1056/NEJMoa060570 PubMedCrossRefGoogle Scholar
  11. 11.
    Sidoni A, Cartaginese F, Colozza M, Gori S, Crino L (2008) ERCC1 expression in triple negative breast carcinoma: the paradox revisited. Breast Cancer Res Treat 111(3):569–570. doi:10.1007/s10549-007-9804-4 PubMedCrossRefGoogle Scholar
  12. 12.
    Riethdorf S, Wikman H, Pantel K (2008) Review: biological relevance of disseminated tumor cells in cancer patients. Int J Cancer 123(9):1991–2006. doi:10.1002/ijc.23825 PubMedCrossRefGoogle Scholar
  13. 13.
    Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, Tibbe AG, Uhr JW, Terstappen LW (2004) Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 10(20):6897–6904. doi:10.1158/1078-0432.CCR-04-0378 PubMedCrossRefGoogle Scholar
  14. 14.
    Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW, Hayes DF (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8):781–791. doi:10.1056/NEJMoa040766 PubMedCrossRefGoogle Scholar
  15. 15.
    Budd GT, Cristofanilli M, Ellis MJ, Stopeck A, Borden E, Miller MC, Matera J, Repollet M, Doyle GV, Terstappen LW, Hayes DF (2006) Circulating tumor cells versus imaging–predicting overall survival in metastatic breast cancer. Clin Cancer Res 12(21):6403–6409. doi:10.1158/1078-0432.CCR-05-1769 PubMedCrossRefGoogle Scholar
  16. 16.
    Nole F, Munzone E, Zorzino L, Minchella I, Salvatici M, Botteri E, Medici M, Verri E, Adamoli L, Rotmensz N, Goldhirsch A, Sandri MT (2008) Variation of circulating tumor cell levels during treatment of metastatic breast cancer: prognostic and therapeutic implications. Ann Oncol 19(5):891–897. doi:10.1093/annonc/mdm558 PubMedCrossRefGoogle Scholar
  17. 17.
    Hayes DF, Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Miller MC, Matera J, Allard WJ, Doyle GV, Terstappen LW (2006) Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res 12(14 Pt 1):4218–4224. doi:10.1158/1078-0432.CCR-05-2821 PubMedCrossRefGoogle Scholar
  18. 18.
    Hayes DF, Smerage J (2008) Is there a role for circulating tumor cells in the management of breast cancer? Clin Cancer Res 14(12):3646–3650. doi:10.1158/1078-0432.CCR-07-4481 PubMedCrossRefGoogle Scholar
  19. 19.
    Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, Somerfield MR, Hayes DF, Bast RC Jr (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25(33):5287–5312. doi:10.1200/JCO.2007.14.2364 PubMedCrossRefGoogle Scholar
  20. 20.
    Carlsson J, Nordgren H, Sjostrom J, Wester K, Villman K, Bengtsson NO, Ostenstad B, Lundqvist H, Blomqvist C (2004) HER2 expression in breast cancer primary tumours and corresponding metastases. Original data and literature review. Br J Cancer 90(12):2344–2348. doi:10.1038/sj.bjc.6601881 PubMedGoogle Scholar
  21. 21.
    Koo JS, Jung W, Jeong J (2010) Metastatic breast cancer shows different immunohistochemical phenotype according to metastatic site. Tumori 96(3):424–432PubMedGoogle Scholar
  22. 22.
    Stoecklein NH, Klein CA (2010) Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. Int J Cancer 126(3):589–598. doi:10.1002/ijc.24916 PubMedCrossRefGoogle Scholar
  23. 23.
    Tapia C, Savic S, Wagner U, Schonegg R, Novotny H, Grilli B, Herzog M, Barascud AD, Zlobec I, Cathomas G, Terracciano L, Feichter G, Bubendorf L (2007) HER2 gene status in primary breast cancers and matched distant metastases. Breast Cancer Res 9(3):R31. doi:10.1186/bcr1676 PubMedCrossRefGoogle Scholar
  24. 24.
    Liedtke C, Broglio K, Moulder S, Hsu L, Kau SW, Symmans WF, Albarracin C, Meric-Bernstam F, Woodward W, Theriault RL, Kiesel L, Hortobagyi GN, Pusztai L, Gonzalez-Angulo AM (2009) Prognostic impact of discordance between triple-receptor measurements in primary and recurrent breast cancer. Ann Oncol 20(12):1953–1958. doi:10.1093/annonc/mdp263 PubMedCrossRefGoogle Scholar
  25. 25.
    Meng S, Tripathy D, Shete S, Ashfaq R, Haley B, Perkins S, Beitsch P, Khan A, Euhus D, Osborne C, Frenkel E, Hoover S, Leitch M, Clifford E, Vitetta E, Morrison L, Herlyn D, Terstappen LW, Fleming T, Fehm T, Tucker T, Lane N, Wang J, Uhr J (2004) HER-2 gene amplification can be acquired as breast cancer progresses. Proc Natl Acad Sci USA 101(25):9393–9398. doi:10.1073/pnas.0402993101 PubMedCrossRefGoogle Scholar
  26. 26.
    Payne RE, Yague E, Slade MJ, Apostolopoulos C, Jiao LR, Ward B, Coombes RC, Stebbing J (2009) Measurements of EGFR expression on circulating tumor cells are reproducible over time in metastatic breast cancer patients. Pharmacogenomics 10(1):51–57. doi:10.2217/14622416.10.1.51 PubMedCrossRefGoogle Scholar
  27. 27.
    Wulfing P, Borchard J, Buerger H, Heidl S, Zanker KS, Kiesel L, Brandt B (2006) HER2-positive circulating tumor cells indicate poor clinical outcome in stage I to III breast cancer patients. Clin Cancer Res 12(6):1715–1720. doi:10.1158/1078-0432.CCR-05-2087 PubMedCrossRefGoogle Scholar
  28. 28.
    Kallergi G, Agelaki S, Kalykaki A, Stournaras C, Mavroudis D, Georgoulias V (2008) Phosphorylated EGFR and PI3K/Akt signaling kinases are expressed in circulating tumor cells of breast cancer patients. Breast Cancer Res 10(5):80. doi:10.1186/bcr2149 CrossRefGoogle Scholar
  29. 29.
    Reuben JM, Lee BN, Li C, Gao H, Broglio KR, Valero V, Jackson SA, Ueno NT, Krishnamurthy S, Hortobagyi GN, Cristofanilli M (2010) Circulating tumor cells and biomarkers: implications for personalized targeted treatments for metastatic breast cancer. Breast J 16(3):327–330PubMedCrossRefGoogle Scholar
  30. 30.
    Punnoose EA, Atwal SK, Spoerke JM, Savage H, Pandita A, Yeh RF, Pirzkall A, Fine BM, Amler LC, Chen DS, Lackner MR (2010) Molecular biomarker analyses using circulating tumor cells. PLoS One 5(9):e12517. doi:10.1371/journal.pone.0012517 PubMedCrossRefGoogle Scholar
  31. 31.
    Pierga JY, Bidard FC, Mathiot C, Brain E, Delaloge S, Giachetti S, de Cremoux P, Salmon R, Vincent-Salomon A, Marty M (2008) Circulating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a phase II randomized trial. Clin Cancer Res 14(21):7004–7010. doi:10.1158/1078-0432.CCR-08-0030 PubMedCrossRefGoogle Scholar
  32. 32.
    Pachmann K, Camara O, Kavallaris A, Krauspe S, Malarski N, Gajda M, Kroll T, Jorke C, Hammer U, Altendorf-Hofmann A, Rabenstein C, Pachmann U, Runnebaum I, Hoffken K (2008) Monitoring the response of circulating epithelial tumor cells to adjuvant chemotherapy in breast cancer allows detection of patients at risk of early relapse. J Clin Oncol 26(8):1208–1215. doi:10.1200/JCO.2007.13.6523 PubMedCrossRefGoogle Scholar
  33. 33.
    Wang LH, Pfister TD, Parchment RE, Kummar S, Rubinstein L, Evrard YA, Gutierrez ME, Murgo AJ, Tomaszewski JE, Doroshow JH, Kinders RJ (2010) Monitoring drug-induced gammaH2AX as a pharmacodynamic biomarker in individual circulating tumor cells. Clin Cancer Res 16(3):1073–1084. doi:10.1158/1078-0432.CCR-09-2799 PubMedCrossRefGoogle Scholar
  34. 34.
    Krivacic RT, Ladanyi A, Curry DN, Hsieh HB, Kuhn P, Bergsrud DE, Kepros JF, Barbera T, Ho MY, Chen LB, Lerner RA, Bruce RH (2004) A rare-cell detector for cancer. Proc Natl Acad Sci USA 101(29):10501–10504. doi:10.1073/pnas.0404036101 PubMedCrossRefGoogle Scholar
  35. 35.
    Hsieh HB, Marrinucci D, Bethel K, Curry DN, Humphrey M, Krivacic RT, Kroener J, Kroener L, Ladanyi A, Lazarus N, Kuhn P, Bruce RH, Nieva J (2006) High speed detection of circulating tumor cells. Biosens Bioelectron 21(10):1893–1899. doi:10.1016/j.bios.2005.12.024 PubMedCrossRefGoogle Scholar
  36. 36.
    Deng G, Herrler M, Burgess D, Manna E, Krag D, Burke JF (2008) Enrichment with anti-cytokeratin alone or combined with anti-EpCAM antibodies significantly increases the sensitivity for circulating tumor cell detection in metastatic breast cancer patients. Breast Cancer Res 10(4):R69. doi:10.1186/bcr2131 PubMedCrossRefGoogle Scholar
  37. 37.
    Sieuwerts AM, Kraan J, Bolt J, van der Spoel P, Elstrodt F, Schutte M, Martens JW, Gratama JW, Sleijfer S, Foekens JA (2009) Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. J Natl Cancer Inst 101(1):61–66. doi:10.1093/jnci/djn419 PubMedGoogle Scholar
  38. 38.
    Rhodes A, Borthwick D, Sykes R, Al-Sam S, Paradiso A (2004) The use of cell line standards to reduce HER-2/neu assay variation in multiple European cancer centers and the potential of automated image analysis to provide for more accurate cut points for predicting clinical response to trastuzumab. Am J Clin Pathol 122(1):51–60. doi:10.1309/61AN-J1XV-3MW8-78YP PubMedCrossRefGoogle Scholar
  39. 39.
    Szollosi J, Balazs M, Feuerstein BG, Benz CC, Waldman FM (1995) ERBB-2 (HER2/neu) gene copy number, p185HER-2 overexpression, and intratumor heterogeneity in human breast cancer. Cancer Res 55(22):5400–5407PubMedGoogle Scholar
  40. 40.
    Thompson EW, Paik S, Brunner N, Sommers CL, Zugmaier G, Clarke R, Shima TB, Torri J, Donahue S, Lippman ME, Martin GR, Dickson RB (1992) Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 150(3):534–544. doi:10.1002/jcp.1041500314 PubMedCrossRefGoogle Scholar
  41. 41.
    Sommers CL, Byers SW, Thompson EW, Torri JA, Gelmann EP (1994) Differentiation state and invasiveness of human breast cancer cell lines. Breast Cancer Res Treat 31(2–3):325–335PubMedCrossRefGoogle Scholar
  42. 42.
    Tabibzadeh SS, Kong QF, Kapur S (1994) Passive acquisition of leukocyte proteins is associated with changes in phosphorylation of cellular proteins and cell-cell adhesion properties. Am J Pathol 145(4):930–940PubMedGoogle Scholar
  43. 43.
    Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV, Inserra E, Diederichs S, Iafrate AJ, Bell DW, Digumarthy S, Muzikansky A, Irimia D, Settleman J, Tompkins RG, Lynch TJ, Toner M, Haber DA (2008) Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med 359(4):366–377. doi:10.1056/NEJMoa0800668 PubMedCrossRefGoogle Scholar
  44. 44.
    Stott SL, Hsu CH, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA, Rothenberg SM, Shah AM, Smas ME, Korir GK, Floyd FP Jr, Gilman AJ, Lord JB, Winokur D, Springer S, Irimia D, Nagrath S, Sequist LV, Lee RJ, Isselbacher KJ, Maheswaran S, Haber DA, Toner M (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci USA 107(43):18392–18397. doi:10.1073/pnas.1012539107 PubMedCrossRefGoogle Scholar
  45. 45.
    Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A, Ryan P, Balis UJ, Tompkins RG, Haber DA, Toner M (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239. doi:10.1038/nature06385 PubMedCrossRefGoogle Scholar
  46. 46.
    Lin HK, Zheng S, Williams AJ, Balic M, Groshen S, Scher HI, Fleisher M, Stadler W, Datar RH, Tai YC, Cote RJ (2010) Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin Cancer Res 16(20):5011–5018. doi:10.1158/1078-0432.CCR-10-1105 PubMedCrossRefGoogle Scholar
  47. 47.
    O’Driscoll L, Kenny E, Mehta JP, Doolan P, Joyce H, Gammell P, Hill A, O’Daly B, O’Gorman D, Clynes M (2008) Feasibility and relevance of global expression profiling of gene transcripts in serum from breast cancer patients using whole genome microarrays and quantitative RT-PCR. Cancer Genomics Proteomics 5(2):94–104PubMedGoogle Scholar
  48. 48.
    Chen Z, Feng J, Buzin CH, Liu Q, Weiss L, Kernstine K, Somlo G, Sommer SS (2009) Analysis of cancer mutation signatures in blood by a novel ultra-sensitive assay: monitoring of therapy or recurrence in non-metastatic breast cancer. PLoS One 4(9):e7220. doi:10.1371/journal.pone.0007220 PubMedCrossRefGoogle Scholar
  49. 49.
    Hayes DF, Walker TM, Singh B, Vitetta ES, Uhr JW, Gross S, Rao C, Doyle GV, Terstappen LW (2002) Monitoring expression of HER-2 on circulating epithelial cells in patients with advanced breast cancer. Int J Oncol 21(5):1111–1117PubMedGoogle Scholar
  50. 50.
    Thompson AM, Jordan LB, Quinlan P, Anderson E, Skene A, Dewar JA, Purdie C, The Breast Recurrence Tissue Study Group (2010) Prospective comparison of switches in biomarker status between primary and recurrent breast cancer: the Breast Recurrence in Tissue Study (BRITS). Breast Cancer Res 12:R92PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • George Somlo
    • 1
  • Sean K. Lau
    • 2
  • Paul Frankel
    • 3
  • H. Ben Hsieh
    • 4
  • Xiaohe Liu
    • 4
  • Lixin Yang
    • 1
  • Robert Krivacic
    • 4
  • Richard H. Bruce
    • 4
  1. 1.Department of Medical Oncology & Therapeutics ResearchCity of Hope Cancer CenterDuarteUSA
  2. 2.Department of Anatomic PathologyCOHCCDuarteUSA
  3. 3.Department of BioinformaticsCOHCCDuarteUSA
  4. 4.Palo Alto Research CenterPalo AltoUSA

Personalised recommendations