Skip to main content

Advertisement

Log in

Identification and characterization of novel potentially oncogenic mutations in the human BAF57 gene in a breast cancer patient

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

BAF57 is a core subunit present in all mammalian SWI/SNF ATP-dependent chromatin remodeling complexes, which regulates important biological processes including gene transcription, DNA recombination, DNA repair, and DNA replication. Among other functions, BAF57 mediates the recruitment of SWI/SNF to sequence-specific transcription factors. Thus, BAF57 plays a crucial role in regulating estrogen-dependent gene expression and proliferation in human cell lines derived from breast tumors. Increasing genetic and biochemical evidences suggest that mutations in BAF57 or alterations in its expression could play an oncogenic role in the mammary gland. Here, we describe two novel mutations in the BAF57 gene found in a breast cancer patient. Both mutations originate premature stop codons, leading to truncated proteins, structurally similar to another BAF57 mutant previously found in a human cell line derived from a breast tumor (BT-549). The expression of these novel BAF57 mutants has abnormally high estrogen receptor alpha (ERα) coactivating potential, suggesting that they might be involved in the aberrant estrogen-dependent proliferation that occur in the majority of breast tumors that retain ERα expression. In addition, the mutations in BAF57 affect its functional interaction with the androgen receptor and ETS2, two transcription factors that play an important role in breast cell biology. Therefore, mutations in BAF57 could impinge on several oncogenic signaling pathways contributing to the origin and/or development of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Wang W, Chi T, Xue Y, Zhou S, Kuo A, Crabtree GR (1998) Architectural DNA binding by a high-mobility-group/kinesin-like subunit in mammalian SWI/SNF-related complexes. Proc Natl Acad Sci USA 95(2):492–498

    Article  PubMed  CAS  Google Scholar 

  2. Tsukiyama T (2002) The in vivo functions of ATP-dependent chromatin-remodelling factors. Nat Rev Mol Cell Biol 3(6):422–429. doi:10.1038/nrm828

    Article  PubMed  CAS  Google Scholar 

  3. Weissman B, Knudsen KE (2009) Hijacking the chromatin remodeling machinery: impact of SWI/SNF perturbations in cancer. Cancer Res 69(21):8223–8230. doi:10.1158/0008-5472.CAN-09-2166

    Article  PubMed  CAS  Google Scholar 

  4. Belandia B, Orford RL, Hurst HC, Parker MG (2002) Targeting of SWI/SNF chromatin remodelling complexes to estrogen-responsive genes. EMBO J 21(15):4094–4103

    Article  PubMed  CAS  Google Scholar 

  5. Garcia-Pedrero JM, Kiskinis E, Parker MG, Belandia B (2006) The SWI/SNF chromatin remodeling subunit BAF57 is a critical regulator of estrogen receptor function in breast cancer cells. J Biol Chem 281(32):22656–22664

    Article  PubMed  CAS  Google Scholar 

  6. Link KA, Burd CJ, Williams E, Marshall T, Rosson G, Henry E, Weissman B, Knudsen KE (2005) BAF57 governs androgen receptor action and androgen-dependent proliferation through SWI/SNF. Mol Cell Biol 25(6):2200–2215

    Article  PubMed  CAS  Google Scholar 

  7. Narod SA, Foulkes WD (2004) BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer 4(9):665–676

    Article  PubMed  CAS  Google Scholar 

  8. Futreal PA, Liu Q, Shattuck-Eidens D, Cochran C, Harshman K, Tavtigian S, Bennett LM, Haugen-Strano A, Swensen J, Miki Y et al (1994) BRCA1 mutations in primary breast and ovarian carcinomas. Science 266(5182):120–122

    Article  PubMed  CAS  Google Scholar 

  9. Kiskinis E, Garcia-Pedrero JM, Villaronga MA, Parker MG, Belandia B (2006) Identification of BAF57 mutations in human breast cancer cell lines. Breast Cancer Res Treat 98(2):191–198

    Article  PubMed  CAS  Google Scholar 

  10. Belandia B, Powell SM, Garcia-Pedrero JM, Walker MM, Bevan CL, Parker MG (2005) Hey1, a mediator of notch signaling, is an androgen receptor corepressor. Mol Cell Biol 25(4):1425–1436

    Article  PubMed  CAS  Google Scholar 

  11. Higgins MJ, Wolff AC (2010) The androgen receptor in breast cancer: learning from the past. Breast Cancer Res Treat 124(3):619–621. doi:10.1007/s10549-010-0864-5

    Article  PubMed  Google Scholar 

  12. Somboonporn W, Davis SR (2004) Testosterone effects on the breast: implications for testosterone therapy for women. Endocr Rev 25(3):374–388. doi:10.1210/er.2003-0016

    Article  PubMed  CAS  Google Scholar 

  13. Baker KM, Wei G, Schaffner AE, Ostrowski MC (2003) Ets-2 and components of mammalian SWI/SNF form a repressor complex that negatively regulates the BRCA1 promoter. J Biol Chem 278(20):17876–17884. doi:10.1074/jbc.M209480200

    Article  PubMed  CAS  Google Scholar 

  14. Trimboli AJ, Cantemir-Stone CZ, Li F, Wallace JA, Merchant A, Creasap N, Thompson JC, Caserta E, Wang H, Chong JL, Naidu S, Wei G, Sharma SM, Stephens JA, Fernandez SA, Gurcan MN, Weinstein MB, Barsky SH, Yee L, Rosol TJ, Stromberg PC, Robinson ML, Pepin F, Hallett M, Park M, Ostrowski MC, Leone G (2009) Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 461(7267):1084–1091. doi:10.1038/nature08486

    Article  PubMed  CAS  Google Scholar 

  15. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics CA. Cancer J Clin 60(5):277–300. doi:10.3322/caac.20073

    Article  Google Scholar 

  16. Hartman J, Strom A, Gustafsson JA (2009) Estrogen receptor beta in breast cancer—diagnostic and therapeutic implications. Steroids 74(8):635–641. doi:10.1016/j.steroids.2009.02.005

    Article  PubMed  CAS  Google Scholar 

  17. Castellano I, Allia E, Accortanzo V, Vandone AM, Chiusa L, Arisio R, Durando A, Donadio M, Bussolati G, Coates AS, Viale G, Sapino A (2010) Androgen receptor expression is a significant prognostic factor in estrogen receptor positive breast cancers. Breast Cancer Res Treat 124(3):607–617. doi:10.1007/s10549-010-0761-y

    Article  PubMed  CAS  Google Scholar 

  18. Turner DP, Findlay VJ, Moussa O, Watson DK (2007) Defining ETS transcription regulatory networks and their contribution to breast cancer progression. J Cell Biochem 102(3):549–559. doi:10.1002/jcb.21494

    Article  PubMed  CAS  Google Scholar 

  19. Redmond AM, Bane FT, Stafford AT, McIlroy M, Dillon MF, Crotty TB, Hill AD, Young LS (2009) Coassociation of estrogen receptor and p160 proteins predicts resistance to endocrine treatment; SRC-1 is an independent predictor of breast cancer recurrence. Clin Cancer Res 15(6):2098–2106. doi:10.1158/1078-0432.CCR-08-1649

    Article  PubMed  CAS  Google Scholar 

  20. Chen J, Archer TK (2005) Regulating SWI/SNF subunit levels via protein-protein interactions and proteasomal degradation: BAF155 and BAF170 limit expression of BAF57. Mol Cell Biol 25(20):9016–9027. doi:10.1128/MCB.25.20.9016-9027.2005

    Article  PubMed  CAS  Google Scholar 

  21. Hah N, Kolkman A, Ruhl DD, Pijnappel WW, Heck AJ, Timmers HT, Kraus WL (2010) A role for BAF57 in cell cycle-dependent transcriptional regulation by the SWI/SNF chromatin remodeling complex. Cancer Res 70(11):4402–4411. doi:10.1158/0008-5472.CAN-09-2767

    Article  PubMed  CAS  Google Scholar 

  22. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, Hallett M, Park M (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14(5):518–527. doi:10.1038/nm1764

    Article  PubMed  CAS  Google Scholar 

  23. Davis LM, Harris C, Tang L, Doherty P, Hraber P, Sakai Y, Bocklage T, Doeden K, Hall B, Alsobrook J, Rabinowitz I, Williams TM, Hozier J (2007) Amplification patterns of three genomic regions predict distant recurrence in breast carcinoma. J Mol Diagn 9(3):327–336

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministerio de Ciencia e Innovación (SAF2007-62642 and SAF2010-21013), Instituto de Salud Carlos III (FIS CP05/00248) and the Fundación de Investigación Médica Mutua Madrileña. We thank Ana Aranda for her continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borja Belandia.

Additional information

M. Ángeles Villaronga and I. López-Mateo contributed equally to this study and should be considered as co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 266 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villaronga, M.Á., López-Mateo, I., Markert, L. et al. Identification and characterization of novel potentially oncogenic mutations in the human BAF57 gene in a breast cancer patient. Breast Cancer Res Treat 128, 891–898 (2011). https://doi.org/10.1007/s10549-011-1492-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1492-4

Keywords

Navigation