Breast Cancer Research and Treatment

, Volume 131, Issue 3, pp 871–880

A signature of immune function genes associated with recurrence-free survival in breast cancer patients

  • Maria Libera Ascierto
  • Maciej Kmieciak
  • Michael O. Idowu
  • Rose Manjili
  • Yingdong Zhao
  • Margaret Grimes
  • Catherine Dumur
  • Ena Wang
  • Viswanathan Ramakrishnan
  • Xiang-Yang Wang
  • Harry D. Bear
  • Francesco M. Marincola
  • Masoud H. Manjili
Preclinical study

Abstract

The clinical significance of tumor-infiltrating immune cells has been reported in a variety of human carcinomas including breast cancer. However, molecular signature of tumor-infiltrating immune cells and their prognostic value in breast cancer patients remain elusive. We hypothesized that a distinct network of immune function genes at the tumor site can predict a low risk versus high risk of distant relapse in breast cancer patients regardless of the status of ER, PR, or HER-2/neu in their tumors. We conducted retrospective studies in a diverse cohort of breast cancer patients with a 1–5 year tumor relapse versus those with up to 7 years relapse-free survival. The RNAs were extracted from the frozen tumor specimens at the time of diagnosis and subjected to microarray analysis and real-time RT-PCR. Paraffin-embedded tissues were also subjected to immunohistochemistry staining. We determined that a network of immune function genes involved in B cell development, interferon signaling associated with allograft rejection and autoimmune reaction, antigen presentation pathway, and cross talk between adaptive and innate immune responses were exclusively upregulated in patients with relapse-free survival. Among the 299 genes, five genes which included B cell response genes were found to predict with >85% accuracy relapse-free survival. Real-time RT-PCR confirmed the 5-gene prognostic signature that was distinct from an FDA-cleared 70-gene signature of MammaPrint panel and from the Oncotype DX recurrence score assay panel. These data suggest that neoadjuvant immunotherapy in patients with high risk of relapse may reduce tumor recurrence by inducing the immune function genes.

Keywords

Breast cancer prognosis Tumor relapse Tumor microenvironment Immune response Neoadjuvant immunotherapy 

Supplementary material

10549_2011_1470_MOESM1_ESM.doc (43 kb)
Supplementary material 1 (DOC 43 kb)
10549_2011_1470_MOESM2_ESM.docx (24 kb)
Supplementary material 2 (DOCX 23 kb)
10549_2011_1470_MOESM3_ESM.docx (13 kb)
Supplementary material 3 (DOCX 12 kb)
10549_2011_1470_MOESM4_ESM.ppt (532 kb)
Supplementary Fig. 1. Significant pathways at the nominal 0.001 level of the unpaired Student’s t test. a B cell development, b antigen presentation, c GVHD signaling, d interferon signaling, and e primary immunodeficiency signaling. (PPT 532 kb)

References

  1. 1.
    Onitilo AA, Engel JM, Greenlee RT, Mukesh BN (2009) Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival. Clin Med Res 7:4–13PubMedCrossRefGoogle Scholar
  2. 2.
    van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536PubMedCrossRefGoogle Scholar
  3. 3.
    van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009PubMedCrossRefGoogle Scholar
  4. 4.
    Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME, Yu J, Jatkoe T, Berns EM, Atkins D, Foekens JA (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679PubMedGoogle Scholar
  5. 5.
    Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lønning P, Børresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98:10869–10874PubMedCrossRefGoogle Scholar
  6. 6.
    Knauer M, Mook S, Rutgers EJ, Bender RA, Hauptmann M, van de Vijver MJ, Koornstra RH, Bueno-de-Mesquita JM, Linn SC, van ‘t Veer LJ (2010) The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer. Breast Cancer Res Treat 120:655–661PubMedCrossRefGoogle Scholar
  7. 7.
    Cronin M, Sangli C, Liu ML, Pho M, Dutta D, Nguyen A, Jeong J, Wu J, Langone KC, Watson D (2007) Analytical validation of the Oncotype DX genomic diagnostic test for recurrence prognosis and therapeutic response prediction in node-negative, estrogen receptor-positive breast cancer. Clin Chem 53:1084–1091PubMedCrossRefGoogle Scholar
  8. 8.
    Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, Hallett M, Park M (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14:518–527PubMedCrossRefGoogle Scholar
  9. 9.
    Pagès F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B, Kirilovsky A, Nilsson M, Damotte D, Meatchi T, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Galon J (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353:2654–2666PubMedCrossRefGoogle Scholar
  10. 10.
    Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura H, Ohtani H (1998) CD8+T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 58:3491–3494PubMedGoogle Scholar
  11. 11.
    Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, Koike M, Inadera H, Matsushima K (2000) Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res 6:3282–3289PubMedGoogle Scholar
  12. 12.
    Rody A, Holtrich U, Pusztai L, Liedtke C, Gaetje R, Ruckhaeberle E, Solbach C, Hanker L, Ahr A, Metzler D, Engels K, Karn T, Kaufmann M (2009) T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers. Breast Cancer Res 11(2):R15PubMedCrossRefGoogle Scholar
  13. 13.
    Worschech A, Kmieciak M, Knutson KL, Bear HD, Szalay AA, Wang E, Marincola FM, Manjili MH (2008) Signatures associated with rejection or recurrence in HER-2/neu-positive mammary tumors. Cancer Res 68:2436–2446PubMedCrossRefGoogle Scholar
  14. 14.
    Wang E, Miller LD, Ohnmacht GA, Liu ET, Marincola FM (2000) High fidelity mRNA amplification. Nat Biotechnol 18:457–459PubMedCrossRefGoogle Scholar
  15. 15.
    Wang E (2005) RNA amplification for successful gene profiling analysis. J Transl Med 3:28PubMedCrossRefGoogle Scholar
  16. 16.
    Jin P, Zhao Y, Ngalame Y, Panelli MC, Nagorsen D, Monsurró V, Smith K, Hu N, Su H, Taylor PR, Marincola FM, Wang E (2004) Selection and validation of endogenous endogenous reference genes using a high throughput approach. BMC Genomics 5:55PubMedCrossRefGoogle Scholar
  17. 17.
    Wang E, Miller LD, Ohnmacht GA, Mocellin S, Perez-Diez A, Petersen D, Zhao Y, Simon R, Powell JI, Asaki E, Alexander HR, Duray PH, Herlyn M, Restifo NP, Liu ET, Rosenberg SA, Marincola FM (2002) Prospective molecular profiling of subcutaneous melanoma metastases suggests classifiers of immune responsiveness. Cancer Res 62:3581–3586PubMedGoogle Scholar
  18. 18.
    Simon R, Lam A, Li MC, Ngan M, Menenzes S, Zhao Y (2007) Analysis of gene expression data using BRB-array tools. Cancer Inform 3:11–17PubMedGoogle Scholar
  19. 19.
    Boyman O, Hefti HP, Conrad C, Nickoloff BJ, Suter M, Nestle FO (2004) Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor. J Exp Med 199:731–736PubMedCrossRefGoogle Scholar
  20. 20.
    Dominguez F, Martínez S, Quiñonero A, Loro F, Horcajadas JA, Pellicer A, Simón C (2008) CXCL10 and IL-6 induce chemotaxis in human trophoblast cell lines. Mol Hum Reprod 14:423–430PubMedCrossRefGoogle Scholar
  21. 21.
    Sun W, Xu W, Snyder M, He W, Ho H, Ivashkiv LB, Zhang JJ (2005) The conserved leu-724 residue is required for both serine phosphorylation and co-activator recruitment for stat1-mediated transcription activation in response to interferon-γ. J Biol Chem 280:41844–41851PubMedCrossRefGoogle Scholar
  22. 22.
    Lundmark F, Duvefelt K, Iacobaeus E, Kockum I, Wallström E, Khademi M, Oturai A, Ryder LP, Saarela J, Harbo HF, Celius EG, Salter H, Olsson T, Hillert J (2007) Variation in interleukin 7 receptor alpha chain (IL7R) influences risk of multiple sclerosis. Nat Genet 39:1108–1113PubMedCrossRefGoogle Scholar
  23. 23.
    Morales JK, Kmieciak M, Graham L, Feldmesser M, Bear HD, Manjili MH (2009) Adoptive transfer of HER2/neu-specific T cells expanded with alternating gamma chain cytokines mediate tumor regression when combined with the depletion of myeloid-derived suppressor cells. Cancer Immunol Immunother 58:941–953PubMedCrossRefGoogle Scholar
  24. 24.
    Morales JK, Kmieciak M, Knutson KL, Bear HD, Manjili MH (2010) GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Gr1- bone marrow progenitor cells into myeloid-derived suppressor cells. Breast Cancer Res Treat 123:39–49PubMedCrossRefGoogle Scholar
  25. 25.
    Le HK, Graham L, Cha E, Morales JK, Manjili MH, Bear HD (2009) Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int Immunopharmacol 9:900–909PubMedCrossRefGoogle Scholar
  26. 26.
    Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, Martin F, Apetoh L, Rébé C, Ghiringhelli F (2010) 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 70:3052–3061PubMedCrossRefGoogle Scholar
  27. 27.
    Lechner MG, Liebertz DJ, Epstein AL (2010) Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol 185:2273–2284PubMedCrossRefGoogle Scholar
  28. 28.
    Krathwohl MD, Anderson JL (2006) Chemokine CXCL10 (IP-10) is sufficient to trigger an immune response to injected antigens in a mouse model. Vaccine 24:2987–2993PubMedCrossRefGoogle Scholar
  29. 29.
    Naschberger E, Croner RS, Merkel S, Dimmler A, Tripal P, Amann KU, Kremmer E, Brueckl WM, Papadopoulos T, Hohenadl C, Hohenberger W, Stürzl M (2008) Angiostatic immune reaction in colorectal carcinoma: impact on survival and perspectives for antiangiogenic therapy. Int J Cancer 123:2120–2129PubMedCrossRefGoogle Scholar
  30. 30.
    Thomas M, Finnegan CE, Rogers KM, Purcell JW, Trimble A, Johnston PG, Boland MP (2004) STAT1: a modulator of chemotherapy-induced apoptosis. Cancer Res 64:8357–8364PubMedCrossRefGoogle Scholar
  31. 31.
    Khodarev NN, Roach P, Pitroda SP, Golden DW, Bhayani M, Shao MY, Darga TE, Beveridge MG, Sood RF, Sutton HG, Beckett MA, Mauceri HJ, Posner MC, Weichselbaum RR (2009) STAT1 pathway mediates amplification of metastatic potential and resistance to therapy. PLoS One 4:e5821PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Maria Libera Ascierto
    • 1
  • Maciej Kmieciak
    • 2
  • Michael O. Idowu
    • 3
  • Rose Manjili
    • 2
  • Yingdong Zhao
    • 4
  • Margaret Grimes
    • 3
  • Catherine Dumur
    • 3
  • Ena Wang
    • 1
  • Viswanathan Ramakrishnan
    • 5
  • Xiang-Yang Wang
    • 6
  • Harry D. Bear
    • 7
  • Francesco M. Marincola
    • 1
  • Masoud H. Manjili
    • 2
  1. 1.Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Center for Human ImmunologyNational Institutes of HealthBethesdaUSA
  2. 2.Department of Microbiology & ImmunologyVirginia Commonwealth University Massey Cancer CenterRichmondUSA
  3. 3.Department of PathologyVirginia Commonwealth University Massey Cancer CenterRichmondUSA
  4. 4.Division of Cancer Treatment and DiagnosisNational Institutes of HealthBethesdaUSA
  5. 5.Department of BiostatisticsVirginia Commonwealth University Massey Cancer CenterRichmondUSA
  6. 6.Department of Human and Molecular GeneticsVirginia Commonwealth University Massey Cancer CenterRichmondUSA
  7. 7.Department of SurgeryVirginia Commonwealth University Massey Cancer CenterRichmondUSA

Personalised recommendations