Breast Cancer Research and Treatment

, Volume 130, Issue 3, pp 747–758 | Cite as

β-Adrenergic receptors (β-AR) regulate VEGF and IL-6 production by divergent pathways in high β-AR-expressing breast cancer cell lines

  • Kelley S. Madden
  • Mercedes J. Szpunar
  • Edward B. Brown
Preclinical study

Abstract

Activation of β-adrenergic receptors (β-AR) drives proangiogenic factor production in several types of cancers. To examine β-AR regulation of breast cancer pathogenesis, β-AR density, signaling capacity, and functional responses to β-AR stimulation were studied in four human breast adenocarcinoma cell lines. β-AR density ranged from very low in MCF7 and MB-361 to very high in MB-231 and in a brain-seeking variant of MB-231, MB-231BR. Consistent with β-AR density, β-AR activation elevated cAMP in MCF7 and MB-361 much less than in MB-231 and MB-231BR. Functionally, β-AR stimulation did not markedly alter vascular endothelial growth factor (VEGF) production by MCF7 or MB-361. In the two high β-AR-expressing cell lines MB-231 and MB-231BR, β-AR-induced cAMP and VEGF production differed considerably, despite similar β-AR density. The β2-AR-selective agonist terbutaline and the endogenous neurotransmitter norepinephrine decreased VEGF production by MB-231, but increased VEGF production by MB-231BR. Moreover, β2-AR activation increased IL-6 production by both MB-231 and MB-231BR. These functional alterations were driven by elevated cAMP, as direct activation of adenylate cyclase by forskolin elicited similar alterations in VEGF and IL-6 production. The protein kinase A antagonist KT5720 prevented β-AR-induced alterations in MB-231 and MB-231BR VEGF production, but not IL-6 production. Conclusions β-AR expression and signaling is heterogeneous in human breast cancer cell lines. In cells with high β-AR density, β-AR stimulation regulates VEGF production through the classical β-AR-cAMP-PKA pathway, but this pathway can elicit directionally opposite outcomes. Furthermore, in the same cells, β-AR activate a cAMP-dependent, PKA-independent pathway to increase IL-6 production. The complexity of breast cancer cell β-AR expression and functional responses must be taken into account when considering β-AR as a therapeutic target for breast cancer treatment.

Keywords

Breast cancer β-Adrenergic receptors VEGF IL-6 Norepinephrine cAMP 

Abbreviations

β-AR

Beta-adrenergic receptor(s)

cAMP

3′,5′-Cyclic adenosine monophosphate

HBSS

Hank’s balanced salt solution

BSA

Bovine serum albumin

FCS

Fetal calf serum

IBMX

Isobutylmethylxanthine

ICI

ICI 118,551 hydrochloride

125ICYP

125I-cyanopindolol

IL-6

Interleukin 6

ISO

Isoproterenol

NE

Norepinephrine

PKA

Protein kinase A

TERB

Terbutaline

VEGF

Vascular endothelial growth factor

ANOVA

Analysis of variance

References

  1. 1.
    Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, Lu C, Jennings NB, Armaiz-Pena G, Bankson JA, Ravoori M, Merritt WM, Lin YG, Mangala LS, Kim TJ, Coleman RL, Landen CN, Li Y, Felix E, Sanguino AM, Newman RA, Lloyd M, Gershenson DM, Kundra V, Lopez-Berestein G, Lutgendorf SK, Cole SW, Sood AK (2006) Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 12(8):939–944PubMedCrossRefGoogle Scholar
  2. 2.
    Raju B, Haug SR, Ibrahim SO, Heyeraas KJ (2007) Sympathectomy decreases size and invasiveness of tongue cancer in rats. Neuroscience 149(3):715–725PubMedCrossRefGoogle Scholar
  3. 3.
    Sloan EK, Priceman SJ, Cox BF, Yu S, Pimentel MA, Tangkanangnukul V, Arevalo JM, Morizono K, Karanikolas BD, Wu L, Sood AK, Cole SW (2010) The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res 70(18):7042–7052. doi:10.1158/0008-5472.CAN-10-0522 PubMedCrossRefGoogle Scholar
  4. 4.
    Yang EV, Sood AK, Chen M, Li Y, Eubank TD, Marsh CB, Jewell S, Flavahan NA, Morrison C, Yeh PE, Lemeshow S, Glaser R (2006) Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res 66(21):10357–10364PubMedCrossRefGoogle Scholar
  5. 5.
    Shakhar G, Ben-Eliyahu S (1998) In vivo β-adrenergic stimulation suppresses natural killer activity and compromises resistance to tumor metastasis in rats. J Immunol 160:3251–3258PubMedGoogle Scholar
  6. 6.
    Tan KS, Nackley AG, Satterfield K, Maixner W, Diatchenko L, Flood PM (2007) Beta2 adrenergic receptor activation stimulates pro-inflammatory cytokine production in macrophages via PKA- and NF-kappaB-independent mechanisms. Cell Signal 19(2):251–260. doi:10.1016/j.cellsig.2006.06.007 PubMedCrossRefGoogle Scholar
  7. 7.
    Pullar CE, Isseroff RR (2006) The beta 2-adrenergic receptor activates pro-migratory and pro-proliferative pathways in dermal fibroblasts via divergent mechanisms. J Cell Sci 119(Pt 3):592–602PubMedCrossRefGoogle Scholar
  8. 8.
    Yin F, Wang YY, Du JH, Li C, Lu ZZ, Han C, Zhang YY (2006) Noncanonical cAMP pathway and p38 MAPK mediate beta2-adrenergic receptor-induced IL-6 production in neonatal mouse cardiac fibroblasts. J Mol Cell Cardiol 40(3):384–393. doi:10.1016/j.yjmcc.2005.12.005 PubMedCrossRefGoogle Scholar
  9. 9.
    Weil J, Benndorf R, Fredersdorf S, Griese DP, Eschenhagen T (2003) Norepinephrine upregulates vascular endothelial growth factor in rat cardiac myocytes by a paracrine mechanism. Angiogenesis 6(4):303–309PubMedCrossRefGoogle Scholar
  10. 10.
    Yang EV, Kim SJ, Donovan EL, Chen M, Gross AC, Webster Marketon JI, Barsky SH, Glaser R (2009) Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: implications for stress-related enhancement of tumor progression. Brain Behav Immun 23(2):267–275PubMedCrossRefGoogle Scholar
  11. 11.
    Fredriksson JM, Lindquist JM, Bronnikov GE, Nedergaard J (2000) Norepinephrine induces vascular endothelial growth factor gene expression in brown adipocytes through a beta-adrenoreceptor/cAMP/protein kinase A pathway involving Src but independently of Erk1/2. J Biol Chem 275(18):13802–13811PubMedCrossRefGoogle Scholar
  12. 12.
    Banfi C, Cavalca V, Veglia F, Brioschi M, Barcella S, Mussoni L, Boccotti L, Tremoli E, Biglioli P, Agostoni P (2005) Neurohormonal activation is associated with increased levels of plasma matrix metalloproteinase-2 in human heart failure. Eur Heart J 26(5):481–488PubMedCrossRefGoogle Scholar
  13. 13.
    Lutgendorf SK, Cole S, Costanzo E, Bradley S, Coffin J, Jabbari S, Rainwater K, Ritchie JM, Yang M, Sood AK (2003) Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin Cancer Res 9(12):4514–4521PubMedGoogle Scholar
  14. 14.
    Yoneda T, Williams PJ, Hiraga T, Niewolna M, Nishimura R (2001) A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 16(8):1486–1495PubMedCrossRefGoogle Scholar
  15. 15.
    Engel G, Hoyer D, Berthold R, Wagner H (1981) (±)[125Iodo]cyanopindolol, a new ligand for β-adrenoceptors: identification and quantification of subclasses of β-adrenoceptors in guinea pig. Naun Schmiedebergs Arch Pharmacol 317:277–285CrossRefGoogle Scholar
  16. 16.
    Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527. doi:10.1016/j.ccr.2006.10.008 PubMedCrossRefGoogle Scholar
  17. 17.
    Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M, Ceccarelli C, Santini D, Paterini P, Marcu KB, Chieco P, Bonafe M (2007) IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 117(12):3988–4002. doi:10.1172/JCI32533 PubMedCrossRefGoogle Scholar
  18. 18.
    Hong DS, Angelo LS, Kurzrock R (2007) Interleukin-6 and its receptor in cancer: implications for Translational Therapeutics. Cancer 110(9):1911–1928. doi:10.1002/cncr.22999 PubMedCrossRefGoogle Scholar
  19. 19.
    Slotkin TA, Zhang J, Dancel R, Garcia SJ, Willis C, Seidler FJ (2000) Beta-adrenoceptor signaling and its control of cell replication in MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat 60(2):153–166PubMedCrossRefGoogle Scholar
  20. 20.
    Salgado R, Junius S, Benoy I, Van Dam P, Vermeulen P, Van Marck E, Huget P, Dirix LY (2003) Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int J Cancer 103(5):642–646. doi:10.1002/ijc.10833 PubMedCrossRefGoogle Scholar
  21. 21.
    Sullivan NJ, Sasser AK, Axel AE, Vesuna F, Raman V, Ramirez N, Oberyszyn TM, Hall BM (2009) Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene 28(33):2940–2947. doi:10.1038/onc.2009.180 PubMedCrossRefGoogle Scholar
  22. 22.
    Rohrbach S, Engelhardt S, Lohse MJ, Werdan K, Holtz J, Muller-Werdan U (2007) Activation of AP-1 contributes to the beta-adrenoceptor-mediated myocardial induction of interleukin-6. Mol Med 13(11–12):605–614. doi:10.2119/2007-00071.Rohrbach PubMedGoogle Scholar
  23. 23.
    Nilsson MB, Armaiz-Pena G, Takahashi R, Lin YG, Trevino J, Li Y, Jennings N, Arevalo J, Lutgendorf SK, Gallick GE, Sanguino AM, Lopez-Berestein G, Cole SW, Sood AK (2007) Stress hormones regulate interleukin-6 expression by human ovarian carcinoma cells through a Src-dependent mechanism. J Biol Chem 282(41):29919–29926. doi:10.1074/jbc.M611539200 PubMedCrossRefGoogle Scholar
  24. 24.
    Nilsson MB, Langley RR, Fidler IJ (2005) Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Res 65(23):10794–10800. doi:10.1158/0008-5472.CAN-05-0623 PubMedCrossRefGoogle Scholar
  25. 25.
    Carie AE, Sebti SM (2007) A chemical biology approach identifies a beta-2 adrenergic receptor agonist that causes human tumor regression by blocking the Raf-1/Mek-1/Erk1/2 pathway. Oncogene 26(26):3777–3788. doi:10.1038/sj.onc.1210172 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Kelley S. Madden
    • 1
  • Mercedes J. Szpunar
    • 2
  • Edward B. Brown
    • 1
  1. 1.Department of Biomedical EngineeringUniversity of Rochester Medical CenterRochesterUSA
  2. 2.Department of PathologyUniversity of Rochester Medical CenterRochesterUSA

Personalised recommendations