Dietary glycemic index, glycemic load, and risk of breast cancer: meta-analysis of prospective cohort studies

Abstract

Consumption diets of high glycemic index (GI) and glycemic load (GL) may increase the risk of breast cancer. We aimed to conduct a meta-analysis of prospective cohort studies to evaluate the associations between dietary GI and GL and risk of breast cancer. We searched the PubMed database for relevant studies through November 2010, with no restrictions. We included prospective cohort studies that reported relative risk (RR) with 95% confidence intervals (CIs) for the associations of dietary GI and GL with breast cancer risk. Summary RRs were calculated using both fixed- and random-effects models. We identified 10 prospective cohort studies eligible for analysis, involving 15,839 cases and 577,538 participants. The summary RR of breast cancer for the highest GI intake compared with the lowest was 1.08 (95% CI: 1.02–1.14), with no evidence of heterogeneity (P = 0.72, I 2 = 0%). For GL, the summary RR was 1.04 (95% CI: 0.95–1.15), and substantial heterogeneity was observed (P = 0.02, I 2 = 55.6%). The GI and GL and breast cancer associations did not significantly modified by geographic region, length of follow-up, number of cases, or menopausal status at baseline. Dose–response analysis was not performed due to limited number of eligible studies. There was no evidence of publication bias. In summary, the present meta-analysis of prospective cohort studies suggests that high dietary GI is associated with a significantly increased risk of breast cancer. However, there is no significant association between dietary GL and breast cancer risk.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Jenkins DJ, Wolever TM, Taylor RH et al (1981) Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr 34(3):362–366

    PubMed  CAS  Google Scholar 

  2. 2.

    Ludwig DS (2002) The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA 287(18):2414–2423

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Larsson SC, Mantzoros CS, Wolk A (2007) Diabetes mellitus and risk of breast cancer: a meta-analysis. Int J Cancer 121(4):856–862

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Gunter MJ, Hoover DR, Yu H et al (2009) Insulin, insulin-like growth factor-I, and risk of breast cancer in postmenopausal women. J Natl Cancer Inst 101(1):48–60

    PubMed  CAS  Google Scholar 

  5. 5.

    Kabat GC, Kim M, Caan BJ et al (2009) Repeated measures of serum glucose and insulin in relation to postmenopausal breast cancer. Int J Cancer 125(11):2704–2710

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Salmeron J, Manson JE, Stampfer MJ, Colditz GA, Wing AL, Willett WC (1997) Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. JAMA 277(6):472–477

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Mulholland HG, Murray LJ, Cardwell CR, Cantwell MM (2008) Dietary glycaemic index, glycaemic load and breast cancer risk: a systematic review and meta-analysis. Br J Cancer 99(7):1170–1175

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Larsson SC, Bergkvist L, Wolk A (2009) Glycemic load, glycemic index and breast cancer risk in a prospective cohort of Swedish women. Int J Cancer 125(1):153–157

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Wen W, Shu XO, Li H, Yang G, Ji BT, Cai H, Gao YT, Zheng W (2009) Dietary carbohydrates, fiber, and breast cancer risk in Chinese women. Am J Clin Nutr 89(1):283–289

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Linos E, Willett WC, Cho E, Frazier L (2010) Adolescent diet in relation to breast cancer risk among premenopausal women. Cancer Epidemiol Biomarkers Prev 19(3):689–696

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Stroup DF, Berlin JA, Morton SC et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283(15):2008–2012

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560

    PubMed  Article  Google Scholar 

  13. 13.

    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Greenland S, Longnecker MP (1992) Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol 135(11):1301–1309

    PubMed  CAS  Google Scholar 

  15. 15.

    Berlin JA, Longnecker MP, Greenland S (1993) Meta-analysis of epidemiologic dose–response data. Epidemiology 4(3):218–228

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

    PubMed  CAS  Google Scholar 

  17. 17.

    Frazier AL, Li L, Cho E, Willett WC, Colditz GA (2004) Adolescent diet and risk of breast cancer. Cancer Causes Control 15(1):73–82

    PubMed  Article  Google Scholar 

  18. 18.

    Nielsen TG, Olsen A, Christensen J, Overvad K, Tjonneland A (2005) Dietary carbohydrate intake is not associated with the breast cancer incidence rate ratio in postmenopausal Danish women. J Nutr 135(1):124–128

    PubMed  CAS  Google Scholar 

  19. 19.

    Giles GG, Simpson JA, English DR, Hodge AM, Gertig DM, Macinnis RJ, Hopper JL (2006) Dietary carbohydrate, fibre, glycaemic index, glycaemic load and the risk of postmenopausal breast cancer. Int J Cancer 118(7):1843–1847

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Cho E, Spiegelman D, Hunter DJ, Chen WY, Colditz GA, Willett WC (2003) Premenopausal dietary carbohydrate, glycemic index, glycemic load, and fiber in relation to risk of breast cancer. Cancer Epidemiol Biomarkers Prev 12(11 Pt 1):1153–1158

    PubMed  CAS  Google Scholar 

  21. 21.

    Jonas CR, McCullough ML, Teras LR, Walker-Thurmond KA, Thun MJ, Calle EE (2003) Dietary glycemic index, glycemic load, and risk of incident breast cancer in postmenopausal women. Cancer Epidemiol Biomarkers Prev 12(6):573–577

    PubMed  CAS  Google Scholar 

  22. 22.

    Higginbotham S, Zhang ZF, Lee IM, Cook NR, Buring JE, Liu S (2004) Dietary glycemic load and breast cancer risk in the Women’s Health Study. Cancer Epidemiol Biomarkers Prev 13(1):65–70

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Holmes MD, Liu S, Hankinson SE, Colditz GA, Hunter DJ, Willett WC (2004) Dietary carbohydrates, fiber, and breast cancer risk. Am J Epidemiol 159(8):732–739

    PubMed  Article  Google Scholar 

  24. 24.

    Silvera SA, Jain M, Howe GR, Miller AB, Rohan TE (2005) Dietary carbohydrates and breast cancer risk: a prospective study of the roles of overall glycemic index and glycemic load. Int J Cancer 114(4):653–658

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Sieri S, Pala V, Brighenti F et al (2007) Dietary glycemic index, glycemic load, and the risk of breast cancer in an Italian prospective cohort study. Am J Clin Nutr 86(4):1160–1166

    PubMed  CAS  Google Scholar 

  26. 26.

    Lajous M, Boutron-Ruault MC, Fabre A, Clavel-Chapelon F, Romieu I (2008) Carbohydrate intake, glycemic index, glycemic load, and risk of postmenopausal breast cancer in a prospective study of French women. Am J Clin Nutr 87(5):1384–1391

    PubMed  CAS  Google Scholar 

  27. 27.

    Monninkhof EM, Elias SG, Vlems FA, van der Tweel I, Schuit AJ, Voskuil DW, van Leeuwen FE (2007) Physical activity and breast cancer: a systematic review. Epidemiology 18(1):137–157

    PubMed  Article  Google Scholar 

  28. 28.

    Ambrosone CB, Kropp S, Yang J, Yao S, Shields PG, Chang-Claude J (2008) Cigarette smoking, N-acetyltransferase 2 genotypes, and breast cancer risk: pooled analysis and meta-analysis. Cancer Epidemiol Biomarkers Prev 17(1):15–26

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Racette SB, Evans EM, Weiss EP, Hagberg JM, Holloszy JO (2006) Abdominal adiposity is a stronger predictor of insulin resistance than fitness among 50–95 year olds. Diabetes Care 29(3):673–678

    PubMed  Article  Google Scholar 

  30. 30.

    Barclay AW, Petocz P, McMillan-Price J, Flood VM, Prvan T, Mitchell P, Brand-Miller JC (2008) Glycemic index, glycemic load, and chronic disease risk—a meta-analysis of observational studies. Am J Clin Nutr 87(3):627–637

    PubMed  CAS  Google Scholar 

  31. 31.

    Gnagnarella P, Gandini S, La Vecchia C, Maisonneuve P (2008) Glycemic index, glycemic load, and cancer risk: a meta-analysis. Am J Clin Nutr 87(6):1793–1801

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Jia-Yi Dong and Li-Qiang Qin were responsible for study design, data acquisition, statistical analysis, and results interpretation. Jia-Yi Dong wrote the article. Li-Qiang Qin provided material support and supervised the research. All authors critically revised the manuscript for important intellectual content and approved the final manuscript. There was no funding for this study. None of the authors had a conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jia-Yi Dong.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dong, JY., Qin, LQ. Dietary glycemic index, glycemic load, and risk of breast cancer: meta-analysis of prospective cohort studies. Breast Cancer Res Treat 126, 287–294 (2011). https://doi.org/10.1007/s10549-011-1343-3

Download citation

Keywords

  • Glycemic index
  • Glycemic load
  • Breast cancer
  • Cohort studies
  • Meta-analysis