Breast Cancer Research and Treatment

, Volume 126, Issue 3, pp 791–796 | Cite as

Classification of breast cancer precursors through exhaled breath

  • Gregory Shuster
  • Zahava Gallimidi
  • Asnat Heyman Reiss
  • Ekaterina Dovgolevsky
  • Salem Billan
  • Roxolyana Abdah-Bortnyak
  • Abraham Kuten
  • Ahuva Engel
  • Ala Shiban
  • Ulrike Tisch
  • Hossam Haick
Brief Report

Abstract

Certain benign breast diseases are considered to be precursors of invasive breast cancer. Currently available techniques for diagnosing benign breast conditions lack accuracy. The purpose of this study was to deliver a proof-of-concept for a novel method that is based on breath testing to identify breast cancer precursors. Within this context, the authors explored the possibility of using exhaled alveolar breath to identify and distinguish between benign breast conditions, malignant lesions, and healthy states, using a small-scale, case-controlled, cross-sectional clinical trial. Breath samples were collected from 36 volunteers and were analyzed using a tailor-made nanoscale artificial NOSE (NA-NOSE). The NA-NOSE signals were analyzed using two independent methods: (i) principal component analysis, ANOVA and Student’s t-test and (ii) support vector machine analysis to detect statistically significant differences between the sub-populations. The NA-NOSE could distinguish between all studied test populations. Breath testing with a NA-NOSE holds future potential as a cost-effective, fast, and reliable diagnostic test for breast cancer risk factors and precursors, with possible future potential as screening method.

Keywords

Breast cancer Benign Classification Volatile biomarkers Breath Sensor NA-NOSE 

Abbreviations

IDC

Infiltrating ductal carcinoma

DCIS

Ductal carcinoma in situ

BC

Breast cancer

NA-NOSE

Nanoscale artificial NOSE

GC–MS

Gas-chromatography/mass-spectrometry

PCA

Principle component analysis

SVM

Support vector machine

Supplementary material

10549_2010_1317_MOESM1_ESM.pdf (137 kb)
Supplementary material 1 (PDF 137 kb)

References

  1. 1.
    Guray M, Sahin AA (2006) Benign breast diseases: classification, diagnosis, and management. Oncologist 11:435–449PubMedCrossRefGoogle Scholar
  2. 2.
    American Cancer Society (2009) Breast cancer facts and figures 2009–2010. American Cancer Society, Inc., AtlantaGoogle Scholar
  3. 3.
    Wiechmann L, Kuerer HM (2008) The molecular journey from ductal carcinoma in situ to invasive breast cancer. Cancer 112(10):2130–2142PubMedCrossRefGoogle Scholar
  4. 4.
    Peng G, Hakim M, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Tisch U, Haick H (2010) Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer 103:542–551PubMedCrossRefGoogle Scholar
  5. 5.
    Songa G, Qina T, Liua H, Xub GB, Pana YY, Xionga FX, Gua KS, Suna GP, Chena ZD (2010) Quantitative breath analysis of volatile organic compounds of lung cancer patients. Lung Cancer 67:227–231CrossRefGoogle Scholar
  6. 6.
    Conzen SD, Grushko TA, Olopade OI (2008) Cancer of the breast. In: Vincent T, DeVita J, Lawrence TS, Rosenberg SA (eds) DeVita, Hellman, and Rosenberg’s cancer: principles & practice of oncology, vol 2, 8th edn. Wolters Kluwer, Philadelphia, pp 1595–1653Google Scholar
  7. 7.
    Vousden KH, Ryan KM (2009) p53 and metabolism. Nat Rev Cancer 9(10):691–700. doi:nrc2715[pii]10.1038/nrc2715 PubMedCrossRefGoogle Scholar
  8. 8.
    Okunieff P, Fenton B, Chen Y (2005) Past, present, and future of oxygen in cancer research. Adv Exp Med Biol 566:213–222PubMedCrossRefGoogle Scholar
  9. 9.
    Kneepkens CMF, Lepage G, Roy CC (1994) The potential of the hydrocarbon breath test as a measure of lipid peroxidation. Free Rad Biol Med 17(2):127–160PubMedCrossRefGoogle Scholar
  10. 10.
    Gordon SM, Szidon JP, Krotoszynski BK, Gibbons RD, Oneill HJ (1985) Volatile organic-compounds in exhaled air from patients with lung-cancer. Clin Chem 31(8):1278–1282PubMedGoogle Scholar
  11. 11.
    Preti G, Labows JN, Kostelc JG, Aldinger S, Daniele R (1988) Analysis of lung air from patients with bronchogenic carcinoma and controls using gas chromatography–mass spectrometry. J Chromatogr 432:1–11PubMedCrossRefGoogle Scholar
  12. 12.
    Peng G, Tisch U, Adams U, Hakim M, Shehada N, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Haick H (2009) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol 4(10):669–673PubMedCrossRefGoogle Scholar
  13. 13.
    Phillips M, Cataneo RN, Ditkoff BA, Fisher P, Greenberg J, Gunawardena R, Kwon CS, Tietje O, Wong C (2006) Prediction of breast cancer using volatile biomarkers in the breath. Breast Cancer Res Treat 99(1):19–21PubMedCrossRefGoogle Scholar
  14. 14.
    Phillips M, Cataneo RN, Saunders C, Hope P, Schmitt P, Wai J (2010) Volatile biomarkers in the breath of women with breast cancer. J Breath Res 4:026003PubMedCrossRefGoogle Scholar
  15. 15.
    Krkosova Z, Kubinec R, Sojak L, Amann A (2008) Temperature-programmed gas chromatography linear retention indices of all C4–C30 monomethylalkanes on methylsilicone OV-1 stationary phase. J Chromatogr A 1179(1):59–68CrossRefGoogle Scholar
  16. 16.
    Filipiak W, Sponring A, Filipiak A, Ager C, Schubert J, Miekisch W, Amann A, Troppmair J (2010) TD–GC–MS analysis of volatile metabolites of human lung cancer and normal cells in vitro. Cancer Epidemiol Biomark Prev 19(1):182–195CrossRefGoogle Scholar
  17. 17.
    Bajtarevic A, Ager C, Pienz M, Klieber M, Schwarz K, Ligor M, Ligor T, Filipiak W, Denz H, Fiegl M, Hilbe W, Weiss W, Lukas P, Jamnig H, Hackl M, Haidenberger A, Buszewski B, Miekisch W, Schubert J, Amann A (2009) Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer 9:348PubMedCrossRefGoogle Scholar
  18. 18.
    Peng G, Trock E, Haick H (2008) Detecting simulated patterns of lung cancer biomarkers by random network of single-walled carbon nanotubes coated with nonpolymeric organic materials. Nano Lett 8(11):3631–3635PubMedCrossRefGoogle Scholar
  19. 19.
    Dovgolevsky E, Haick H (2008) Direct observation of the transition point between quasi-spherical and cubic nanoparticles in two-step seed-mediated growth method. Small 4(11):2059–2066PubMedCrossRefGoogle Scholar
  20. 20.
    Dovgolevsky E, Tisch U, Haick H (2009) Chemically sensitive resistors based on monolayer-capped cubic nanoparticles: towards configurable nanoporous sensors. Small 5(10):1158–1161PubMedGoogle Scholar
  21. 21.
    Roeck F, Barsan N, Weimar U (2008) Electronic nose: current status and future trends. Chem Rev 108(2):705–725CrossRefGoogle Scholar
  22. 22.
    Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 30(3):273–297Google Scholar
  23. 23.
    Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. SIGKDD Explor Newsl 11(1):10–18CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Gregory Shuster
    • 1
  • Zahava Gallimidi
    • 2
    • 3
  • Asnat Heyman Reiss
    • 2
  • Ekaterina Dovgolevsky
    • 1
  • Salem Billan
    • 4
  • Roxolyana Abdah-Bortnyak
    • 4
  • Abraham Kuten
    • 3
    • 4
  • Ahuva Engel
    • 2
    • 3
  • Ala Shiban
    • 1
  • Ulrike Tisch
    • 1
  • Hossam Haick
    • 1
  1. 1.The Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion—Israel Institute of TechnologyHaifaIsrael
  2. 2.Breast Imaging Unit, Radiology DepartmentThe Rambam Health Care CampusHaifaIsrael
  3. 3.Bruce Rappaport Faculty of MedicineTechnion—Israel Institute of TechnologyHaifaIsrael
  4. 4.Oncology DivisionRambam Health Care CampusHaifaIsrael

Personalised recommendations