Skip to main content

Advertisement

Log in

Tetra-methoxystilbene modulates ductal growth of the developing murine mammary gland

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Extensive data suggest that estradiol contributes to the development of breast cancer by acting as a mitogen and exerting direct genotoxic effects after enzymatic conversion to 4-hydroxyestradiol (4-OHE2) via cytochrome P450 1B1 (CYP1B1). The mammary gland, ovary, and uterus all express CYP1B1. Overexpression of this enzyme has been associated with an increased risk of breast cancer and blockade might reduce this carcinogenic effect. For this reason, we conducted systematic in vitro and in vivo studies of a CYP1B1 inhibitor, TMS (2,3′,4,5′-tetramethoxystilbene). We found that TMS blocked the enzymatic conversion of radiolabeled estradiol to both 2-hydroxyestradiol (2-OHE2) and 4-OHE2, but did not inhibit Cyp1b1 message formation. In vivo studies using mass spectrometry showed that TMS inhibited formation of 2-OHE2 and 4-OHE2 and the resulting estrogen-DNA adducts. To examine its biologic actions in vivo, we investigated whether TMS could block the hyperplastic changes that occur in the developing breast of aromatase-transfected mice. We found that TMS induced a significant reduction of ductal structures in mice less than 6 months in age. In older mice, no reduction in breast morphology occurred. These latter studies uncovered unexpected estrogen agonistic actions of TMS at high doses, including a paradoxical stimulation of breast ductal structures and the endometrium. These studies suggest that the enzyme inhibitory properties of TMS, as well as the effects on developing breast, could implicate a role for TMS in breast cancer prevention, but only in low doses and on developing breast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

TMS:

2,4,3′,5′-Tetramethoxystilbene

CYP1A1:

Cytochrome P450 1A1

Cyp1a1:

Mouse cytochrome P450 1B1

CYP1B1:

Human cytochrome P450 1B1

Cyp1b1:

Mouse cytochrome P450 1B1

E2:

Estradiol

4-OHE2:

4-Hydroxyestradiol

2-OHE2:

2-Hydroxyestradiol

TDLU:

Terminal duct lobular units

TDSABs:

Tertiary ductal structures and alveolar buds

References

  1. Lareef MH, Garber J, Russo PA, Russo IH, Heulings R, Russo J (2005) The estrogen antagonist ICI-182-780 does not inhibit the transformation phenotypes induced by 17-beta-estradiol and 4-OH estradiol in human breast epithelial cells. Int J Oncol 26:423–429

    PubMed  CAS  Google Scholar 

  2. Jefcoate CR, Liehr JG, Santen RJ, Sutter TR, Yager JD, Yue W, Santner SJ, Tekmal R, Demers L, Pauley R, Naftolin F, Mor G, Berstein L (2000) Tissue-specific synthesis and oxidative metabolism of estrogens. J Natl Cancer Inst Monogr 27:95–112

    PubMed  CAS  Google Scholar 

  3. Liehr JG, Ricci MJ (1996) 4-Hydroxylation of estrogens as marker of human mammary tumors. Proc Natl Acad Sci USA 93:3294–3296

    Article  PubMed  CAS  Google Scholar 

  4. Liehr JG (1997) Dual role of oestrogens as hormones and pro-carcinogens: tumour initiation by metabolic activation of oestrogens. Eur J Cancer Prev 6:3–10

    Article  PubMed  CAS  Google Scholar 

  5. Cavalieri E, Chakravarti D, Guttenplan J, Hart E, Ingle J, Jankowiak R, Muti P, Rogan E, Russo J, Santen R, Sutter T (2006) Catechol estrogen quinones as initiators of breast and other human cancers: implications for biomarkers of susceptibility and cancer prevention. Biochim Biophys Acta 1766:63–78

    PubMed  CAS  Google Scholar 

  6. Guengerich FP, Chun YJ, Kim D, Gillam EM, Shimada T (2003) Cytochrome P450 1B1: a target for inhibition in anticarcinogenesis strategies. Mutat Res 523–524:173–182

    Google Scholar 

  7. McKay JA, Melvin WT, Ah-See AK, Ewen SW, Greenlee WF, Marcus CB, Burke MD, Murray GI (1995) Expression of cytochrome P450 CYP1B1 in breast cancer. FEBS Lett 374:270–272

    Article  PubMed  CAS  Google Scholar 

  8. Murray GI, Taylor MC, McFadyen MC, McKay JA, Greenlee WF, Burke MD, Melvin WT (1997) Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res 57:3026–3031

    PubMed  CAS  Google Scholar 

  9. Tsuchiya Y, Nakajima M, Yokoi T (2005) Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett 227:115–124

    Article  PubMed  CAS  Google Scholar 

  10. Guengerich FP, Chun YJ, Kim D, Gillam EM, Shimada T (2003) Cytochrome P450 1B1: a target for inhibition in anticarcinogenesis strategies. Mutat Res 523–524:173–182

    Google Scholar 

  11. Park H, Aiyar SE, Fan P, Wang J, Yue W, Okouneva T, Cox C, Jordan MA, Demers L, Cho H, Kim S, Song RX, Santen RJ (2007) Effects of tetramethoxystilbene on hormone-resistant breast cancer cells: biological and biochemical mechanisms of action. Cancer Res 67:5717–5726

    Article  PubMed  CAS  Google Scholar 

  12. Kim S, Ko H, Park JE, Jung S, Lee SK, Chun YJ (2002) Design, synthesis, and discovery of novel trans-stilbene analogues as potent and selective human cytochrome P450 1B1 inhibitors. J Med Chem 45:160–164

    Article  PubMed  CAS  Google Scholar 

  13. Jeng MH, Yue W, Eischeid A, Wang JP, Santen RJ (2000) Role of MAP kinase in the enhanced cell proliferation of long term estrogen deprived human breast cancer cells. Breast Cancer Res Treat 62:167–175

    Article  PubMed  CAS  Google Scholar 

  14. Spink DC, Hayes CL, Young NR, Christou M, Sutter TR, Jefcoate CR, Gierthy JF (1994) The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on estrogen metabolism in MCF-7 breast cancer cells: evidence for induction of a novel 17 beta-estradiol 4-hydroxylase. J Steroid Biochem Mol Biol 51:251–258

    Article  PubMed  CAS  Google Scholar 

  15. Tekmal RR, Ramachandra N, Gubba S, Durgam VR, Mantione J, Toda K, Shizuta Y, Dillehay DL (1996) Overexpression of int-5/aromatase in mammary glands of transgenic mice results in the induction of hyperplasia and nuclear abnormalities. Cancer Res 56:3180–3185

    PubMed  CAS  Google Scholar 

  16. Xu M, Miller MS (2004) Determination of murine fetal Cyp1a1 and 1b1 expression by real-time fluorescence reverse transcription-polymerase chain reaction. Toxicol Appl Pharmacol 201:295–302

    Article  PubMed  CAS  Google Scholar 

  17. Gaikwad NW, Yang L, Muti P, Meza JL, Pruthi S, Ingle JN, Rogan EG, Cavalieri EL (2008) The molecular etiology of breast cancer: evidence from biomarkers of risk. Int J Cancer 122:1949–1957

    Article  PubMed  CAS  Google Scholar 

  18. Moral R, Wang R, Russo IH, Mailo DA, Lamartiniere CA, Russo J (2007) The plasticizer butyl benzyl phthalate induces genomic changes in rat mammary gland after neonatal/prepubertal exposure. BMC Genomics 8:453

    Article  PubMed  Google Scholar 

  19. Chun YJ, Lee SK, Kim MY (2005) Modulation of human cytochrome P450 1B1 expression by 2,4,3′,5′-tetramethoxystilbene. Drug Metab Dispos 33:1771–1776

    PubMed  CAS  Google Scholar 

  20. Wu F, Safe S (2007) Differential activation of wild-type estrogen receptor alpha and C-terminal deletion mutants by estrogens, antiestrogens and xenoestrogens in breast cancer cells. J Steroid Biochem Mol Biol 103:1–9

    Article  PubMed  CAS  Google Scholar 

  21. Aiyar SE, Park H, Aldo PB, Mor G, Gildea JJ, Miller AL, Thompson EB, Castle JD, Kim S, Santen RJ (2010) TMS, a chemically modified herbal derivative of Resveratrol, induces cell death by targeting Bax. Breast Cancer Res Treat 124(1):265–277

    Article  PubMed  CAS  Google Scholar 

  22. Russo J, Russo IH (2004) Genotoxicity of steroidal estrogens. Trends Endocrinol Metab 15:211–214

    Article  PubMed  CAS  Google Scholar 

  23. Russo J, Russo IH (2008) Breast development, hormones and cancer 247. Adv Exp Med Biol 630:52–56

    Article  PubMed  CAS  Google Scholar 

  24. Santen R, Cavalieri E, Rogan E, Russo J, Guttenplan J, Ingle J, Yue W (2009) Estrogen mediation of breast tumor formation involves estrogen receptor-dependent, as well as independent, genotoxic effects. Ann N Y Acad Sci 1155:132–140

    Article  PubMed  CAS  Google Scholar 

  25. Gupta M, McDougal A, Safe S (1998) Estrogenic and antiestrogenic activities of 16alpha- and 2-hydroxy metabolites of 17beta-estradiol in MCF-7 and T47D human breast cancer cells. J Steroid Biochem Mol Biol 67:413–419

    Article  PubMed  CAS  Google Scholar 

  26. Russo J, Santen RJ, Russo IH (2005) Hormonal control of breast development. In: DeGroot LJ, Jameson JL (eds) Endocrinology, 5th edn. W.B. Saunders, Philadelphia, pp 3045–3055

    Google Scholar 

  27. Conneely OM, Mulac-Jericevic B, Arnett-Mansfield R (2007) Progesterone signaling in mammary gland development. Ernst Schering Found Symp Proc 1:45–54

    Article  PubMed  Google Scholar 

  28. Topper YJ, Freeman CS (1980) Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev 60:1049–1106

    PubMed  CAS  Google Scholar 

  29. Wellings SR, Jensen HM (1973) On the origin and progression of ductal carcinoma in the human breast. J Natl Cancer Inst 50:1111–1118

    PubMed  CAS  Google Scholar 

  30. Parks AG (1959) The micro-anatomy of the breast. Ann R Coll Surg Engl 25:235–251

    PubMed  CAS  Google Scholar 

  31. Basly JP, Marre-Fournier F, Le Bail JC, Habrioux G, Chulia AJ (2000) Estrogenic/antiestrogenic and scavenging properties of (E)- and (Z)-resveratrol. Life Sci 66:769–777

    Article  PubMed  CAS  Google Scholar 

  32. Gehm BD, Levenson AS, Liu H, Lee EJ, Amundsen BM, Cushman M, Jordan VC, Jameson JL (2004) Estrogenic effects of resveratrol in breast cancer cells expressing mutant and wild-type estrogen receptors: role of AF-1 and AF-2. J Steroid Biochem Mol Biol 88:223–234

    Article  PubMed  CAS  Google Scholar 

  33. Wu F, Safe S (2007) Differential activation of wild-type estrogen receptor alpha and C-terminal deletion mutants by estrogens, antiestrogens and xenoestrogens in breast cancer cells. J Steroid Biochem Mol Biol 103:1–9

    Article  PubMed  CAS  Google Scholar 

  34. Guengerich FP (2001) Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14:611–650

    Article  PubMed  CAS  Google Scholar 

  35. Dawling S, Roodi N, Parl FF (2003) Methoxyestrogens exert feedback inhibition on cytochrome P450 1A1 and 1B1. Cancer Res 63:3127–3132

    PubMed  CAS  Google Scholar 

  36. Lu F, Zahid M, Wang C, Saeed M, Cavalieri EL, Rogan EG (2008) Resveratrol prevents estrogen-DNA adduct formation and neoplastic transformation in MCF-10F cells. Cancer Prev Res (Phila) 1:135–145

    Article  CAS  Google Scholar 

  37. Zahid M, Gaikwad NW, Rogan EG, Cavalieri EL (2007) Inhibition of depurinating estrogen-DNA adduct formation by natural compounds. Chem Res Toxicol 20:1947–1953

    Article  PubMed  CAS  Google Scholar 

  38. Zahid M, Gaikwad NW, Ali MF, Lu F, Saeed M, Yang L, Rogan EG, Cavalieri EL (2008) Prevention of estrogen-DNA adduct formation in MCF-10F cells by resveratrol. Free Radic Biol Med 45:136–145

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Susan G. Komen Breast cancer foundation KG080267 (S. E. Aiyar), and the UVa. Cancer Center through The Women’s Oncology Research Fund and the NCI Cancer Center support grant P30 CA44579 (R.J. Santen). Core support at the Eppley Institute was provided by grant P30 CA36727 from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah E. Aiyar.

Additional information

Taehyun Kim, Hoyong Park contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Supplementary material 2 (PPT 34023 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, T., Park, H., Yue, W. et al. Tetra-methoxystilbene modulates ductal growth of the developing murine mammary gland. Breast Cancer Res Treat 126, 779–789 (2011). https://doi.org/10.1007/s10549-010-1301-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1301-5

Keywords

Navigation