Skip to main content

Advertisement

Log in

Two functional variations in 5′-UTR of hoGG1 gene associated with the risk of breast cancer in Chinese

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

8-Hydroxy-2′-deoxyguanine (8-OHdG) is produced by the oxidative stress-induced damage in DNA, which could pair with adenine (A) during DNA replication, leading to G-T transversion mutations. Glycosylase hOGG1 can recognize and excise oxidized guanines from duplex DNA. This work aims to investigate the relationship between the functional variations in 5-untranslated region (5′-UTR) of hOGG1 gene and the risk of breast cancer. Genotypes were analyzed in 518 sporadic breast cancer patients and 777 health controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by logistic regression. Risk-stratified subgroup analysis was performed to reveal the associations between the detected variations and the risk of characteristic breast cancer. In addition, immunohistochemistry was carried out to assess the functional effect of these variations on hOGG1gene expression. Five variations in 5′-UTR of hOGG1 gene are found in this study. Three of them, c.-18G>T, c.-23A>G, and c.-53G>C, are known single nucleotide polymorphisms, the other two, c.-45G>A and c.-63G>C, are rare variations. The frequency of c.-18G/T and c.-53G/C was significantly higher in breast cancer patients than those in healthy controls (P = 0.03, OR 2.01, 95% CI 1.04–3.90; and P = 0.01, OR 2.43, 95% CI 1.17–5.04, respectively). Both variations were especially prevalent in premenopausal status, and in the triple (estrogen receptor, progesterone receptor, and human epidermal growth factor Receptor 2) negative subgroups, respectively. Moreover, the variation of c.-18G>T could cause a reduced expression of hOGG1 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

SNP:

Single nucleotide polymorphism

5′-UTR:

5-Untranslated region

OR:

Odds ratio

CI:

Confidence interval

BMI:

Body mass index

TNBC:

Triple negative breast cancer

References

  1. Garcia M, Jemal A, Ward EM, Center MM, Hao Y, Siegel RL, Thun MJ (2007) Global cancer facts & figures 2007. American Cancer Society, Atlanta, GA

    Google Scholar 

  2. Yang L, Parkin DM, Ferlay J, Liandi L, Chen Y (2005) Estimates of cancer incidence in China for 2000 and projections for 2005. Cancer Epidemiol Biomarkers Prev 14:243–250

    Article  PubMed  Google Scholar 

  3. Wilson III DM, Bohr VA (2007) The mechanics of base excision repair, and its relationship to aging and disease. DNA Repair 6(4):544–559. doi:10.1016/j.dnarep.2006.10.017

    Article  Google Scholar 

  4. Maynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA (2009) Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 30(1):2–10. doi:10.1093/carcin/bgn250

    Article  PubMed  CAS  Google Scholar 

  5. Goode EL, Ulrich CM, Potter JD (2002) Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev 11:1513–1530

    PubMed  CAS  Google Scholar 

  6. Rossner P Jr, Terry MB, Gammon MD, Zhang FF, Teitelbaum SL, Eng SM, Sagiv SK, Gaudet MM, Neugut AI, Santella RM (2006) OGG1 polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev 15(4):811–815. doi:10.1158/1055-9965

    Article  PubMed  CAS  Google Scholar 

  7. Vineis P, Manuguerra M, Kavvoura FK, Guarrera S, Allione A, Rosa F, Di Gregorio A, Polidoro S, Saletta F, Ioannidis JP, Matullo G (2009) A field synopsis on low-penetrance variants in DNA repairs genes and cancer susceptibility. J Natl Cancer Inst 101(1):24–36. doi:10.1093/jnci/djn437

    PubMed  CAS  Google Scholar 

  8. Dongying Gu, Meilin W, Zhengdong Z, Jinfei C (2010) Lack of association between the hOGG1 Ser326Cys polymorphism and breast cancer risk: evidence from 11 case-control studies. Breast Cancer Res Treat 122(2):527–531. doi:10.1007/s10549-009-0723-4

    Article  Google Scholar 

  9. Ishida T, Takashima R, Fukayama M, Hamada C, Hippo Y, Fujii T, Moriyama S, Matsuba C, Nakahori Y, Morita H, Yazaki Y, Kodama T, Nishimura S, Aburatani H (1999) New DNA polymorphisms of human MMH/OGG1 gene: prevalence of one polymorphism among lung adenocarcinoma patients in Japanese. Int J Cancer 80(1):18–21. doi:10.1002/(SICI)1097-0215(19990105)80:1<18:AID-IJC4>3.0.CO;2-E

    Article  PubMed  CAS  Google Scholar 

  10. Kim JC, Ka H, Lee YM, Koo KH, Kim HC, Yu CS, Jang SJ, Kim YS, Lee HI, Lee KH (2007) MYH, OGG1, MTH1, and APC alterations involved in the colorectal tumorigenesis of Korean patients with multiple adenomas. Virchows Arch 450(3):311–319. doi:10.1007/s00428-006-0363-6

    Article  PubMed  CAS  Google Scholar 

  11. Kondo S, Toyokuni S, Tanaka T, Hiai H, Onodera H, Kasai H, Imamura M (2000) Overexpression of the hOGG1 gene and high 8-hydroxy-2′-deoxyguanosine (8-OHdG) lyase activity in human colorectal carcinoma: regulation mechanism of the 8-OHdG level in DNA. Clin Cancer Res 6(4):1394–1400

    PubMed  CAS  Google Scholar 

  12. Kohno T, Shinmura K, Tosaka M, Tani M, Kim S-R, Sugimura H, Nohmi T, Kasai H, Yokota J (1998) Genetic polymorphisms and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene 16(25):3219–3225

    Article  PubMed  CAS  Google Scholar 

  13. Smith L (2008) Post-transcriptional regulation of gene expression by alternative 5′-untranslated regions in carcinogenesis. Biochem Soc Trans 36:708–711. doi:10.1042/BST0360708

    Article  PubMed  CAS  Google Scholar 

  14. Wang T, Chen Y-H, Hong H, Zeng Y, Zhang J, Lu J-P, Jeansonne B, Lu Q (2009) Increased nucleotide polymorphic changes in the 5′-untranslated region of δ-catenin (CTNND2) gene in prostate cancer. Oncogene 28(4):555–564. doi:10.1038/onc.2008.399

    Article  PubMed  CAS  Google Scholar 

  15. Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, Dowsett M, Fitzgibbons PL, Hanna WM, Langer A, McShane LM, Paik S, Pegram MD, Perez EA, Press MF, Rhodes A, Sturgeon C, Taube SE, Tubbs R, Vance GH, Marc van de Vijver M, Wheeler TM, Hayes DF (2007) ASCO/CAP guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25(1):118–145

    Article  PubMed  CAS  Google Scholar 

  16. Li D, Zhang W, Zhu J, Chang P, Sahin A, Singletary E, Bondy M, Hazra T, Mitra S, Lau SS, Shen J, DiGiovanni J (2001) Oxidative DNA damage and 8-hydroxy-2-deoxyguanosine DNA glycosylase/apurinic lyase in human breast cancer. Mol Carcinog 31(4):214–223. doi:10.1002/mc.1056

    Article  PubMed  CAS  Google Scholar 

  17. Bartkova J, Hořejší Z, Koed K, Krämer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, Ørntoft T, Lukas J, Bartek J (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434(14):864–870. doi:10.1038/nature03482

    Article  PubMed  CAS  Google Scholar 

  18. Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28(5):739–745. doi:10.1016/j.molcel.2007.11.015

    Article  PubMed  CAS  Google Scholar 

  19. Dhénaut A, Boiteux S, Radicella JP (2000) Characterization of the hOGG1 promoter and its expression during the cell cycle. Mutat Res 461(2):109–118. doi:10.1016/S0921-8777(00)00042-2

    PubMed  Google Scholar 

  20. Benz1 CC, Yau C (2008) Ageing, oxidative stress and cancer: paradigms in parallax. Nat Rev Cancer 8:875–879. doi:10.1038/nrc2522

    Google Scholar 

  21. Lee JA, Kim K-I, Bae JW, Jung Y-H, Hyonggin A, Lee ES (2010) Triple negative breast cancer in Korea-distinct biology with different impact of prognostic factors on survival. Breast Cancer Res Treat 123(1):177–187. doi:10.1007/s10549-010-0998-5

    Article  PubMed  Google Scholar 

  22. Kang SP, Martel M, Harris LN (2008) Triple negative breast cancer: current understanding of biology and treatment options. Curr Opin Obstet Gynecol 20(1):40–46. doi:10.1097/GCO.0b013e3282f40de9

    Article  PubMed  Google Scholar 

  23. Trivers KF, Lund MJ, Porter PL, Liff JM, Flagg EW, Coates RJ, Eley JW (2009) The epidemiology of triple-negative breast cancer, including race. Cancer Causes Control 20:1071–1082. doi:10.1007/s10552-009-9331-1

    Article  PubMed  Google Scholar 

  24. Reliene R, Bishop AJ, Schiestl RH (2007) Involvement of homologous recombination in carcinogenesis. Adv Genet 58:67–87. doi:10.1016/S0065-2660(06)58003-4

    Article  PubMed  CAS  Google Scholar 

  25. Reis-Filho JS, Tutt ANJ (2008) Triple negative tumours: a critical review. Histopathology 1(52):108–118. doi:10.1111/j.1365-2559.2007.02889.x

    Google Scholar 

  26. Alli E, Sharma VB, Sunderesakumar P, Ford JM (2009) Defective repair of oxidative DNA damage in triple-negative breast cancer confers sensitivity to inhibition of poly (ADP-Ribose) polymerase. Cancer Res 69(15):3589–3596. doi:10.1158/0008-5472.CAN-08-4016

    Article  PubMed  CAS  Google Scholar 

  27. Saha T, Rih JK, Roy Ra, Ballal R, Rosen EM (2010) Transcriptional regulation of the base excision repair pathway by BRCA1. J Biol Chem 285(25):19092–19105. doi:10.1074/jbc.M110.104430

    Article  PubMed  CAS  Google Scholar 

  28. Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319:1352–1355. doi:10.1126/science.1140735

    Article  PubMed  CAS  Google Scholar 

  29. Lakhani SR, Van de Vijver MJ, Jacquemier J, Anderson TJ, Osin PP, McGuffog L, Easton DF (2002) The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol 20(9):2310–2318

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Huimei Chen and Dr. Yimei Fan (Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China) and Prof. Peter Propping for their valuable advice on this work. This work was partly supported by the National Natural Science Foundation of China (grant number: 30800546 and 30972535); the Doctoral Foundation of Education Ministry of China (grant number: 20070284015); Natural Science Foundation of Jiangsu Province, China (grant number: BK2008269); the Jiangsu Science and Technology Foundation (grant number: BZ2008055) and the Jiangsu Province Institute of Cancer Research Foundation (grant number: ZQ200703).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Wang, J., Guo, W. et al. Two functional variations in 5′-UTR of hoGG1 gene associated with the risk of breast cancer in Chinese. Breast Cancer Res Treat 127, 795–803 (2011). https://doi.org/10.1007/s10549-010-1284-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1284-2

Keywords

Navigation