Skip to main content

Advertisement

Log in

MPA-induced gene expression and stromal and parenchymal gene expression profiles in luminal murine mammary carcinomas with different hormonal requirements

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Over the past several years, we have been interested in understanding the mechanisms by which mammary carcinomas acquire hormone independence. We demonstrated that carcinoma associated fibroblasts participate in the ligand-independent activation of progesterone receptors inducing tumor growth. In this study, we used DNA microarrays to compare the gene expression profiles of tumors from the MPA mouse breast cancer model, one hormone-dependent (C4-HD) and one hormone-independent (C4-HI), using whole tumor samples or laser-captured purified stromal and epithelial cells obtained from the same tumors. The expression of selected genes was validated by immunohistochemistry and immunofluorescence assays. We identified 413 genes specifically expressed in tumor stroma. Eighty-five percent of these genes were upregulated, whereas the remaining 15% were downregulated in C4-HI relative to their expression in the C4-HD tumor stroma. Several matrix metallopeptidases were overexpressed in the C4-HI tumor microenvironment. On the other hand, 1100 genes were specifically expressed in the tumor parenchyma. Among them, the 29% were upregulated, whereas the remaining 71% were downregulated in C4-HI relative to C4-HD tumor epithelium. Steap, Pdgfc, Runx2, Cxcl9, and Sdf2 were among the genes with high expression in the C4-HI tumor parenchyma. Interestingly, Fgf2 was one of the few genes upregulated by MPA in C4-HD tumors, confirming its pivotal role in regulating tumor growth in this model. In conclusion, we demonstrate herein a gene expression profile that distinguishes both the epithelial and the stromal cells in mammary tumors with different hormone dependence, supporting the hypothesis that the tumor-associated stroma may contribute to hormone-independent tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CAFs:

Carcinoma-associated fibroblasts

DCIS:

Ductal carcinoma in situ

EASE:

Expression analysis systematic explorer

ER:

Estrogen receptor

FDR:

False discovery rate

GO:

Gene ontology

H&E:

Hematoxylin and eosin

HD:

Hormone-dependent or MPA-dependent tumor

HI:

Hormone-independent or MPA-independent tumor

IDC:

Invasive ductal carcinomas

LCM:

Laser capture microdissection

MPA:

Medroxyprogesterone acetate

NAFs:

Normal-associated fibroblasts

PI:

Propidium iodide

PR:

Progesterone receptor

SAM:

Significance analysis of microarrays

s.c.:

Subcutaneous

References

  1. Normanno N, Di Maio M, De Maio E, De Luca A, de Matteis A, Giordano A, Perrone F (2005) Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer. Endocr Relat Cancer 12:721–747

    Article  PubMed  CAS  Google Scholar 

  2. Lange CA, Richer JK, Shen T, Horwitz KB (1998) Convergence of progesterone and epidermal growth factor signaling in breast cancer. Potentiation of mitogen-activated protein kinase pathways. J Biol Chem 273:31308–31316

    Article  PubMed  CAS  Google Scholar 

  3. Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S, Nakshatri H (2001) Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. J Biol Chem 276:9817–9824

    Article  PubMed  CAS  Google Scholar 

  4. Shupnik MA (2004) Crosstalk between steroid receptors and the c-Src-receptor tyrosine kinase pathways: implications for cell proliferation. Oncogene 23:7979–7989

    Article  PubMed  CAS  Google Scholar 

  5. Shigemura K, Isotani S, Wang R, Fujisawa M, Gotoh A, Marshall FF, Zhau HE, Chung LW (2009) Soluble factors derived from stroma activated androgen receptor phosphorylation in human prostate LNCaP cells: roles of ERK/MAP kinase. Prostate 69:949–955

    Article  PubMed  CAS  Google Scholar 

  6. Yamaguchi Y (2007) Microenvironmental regulation of estrogen signals in breast cancer. Breast Cancer 14:175–181

    Article  PubMed  Google Scholar 

  7. Arendt LM, Rudnick JA, Keller PJ, Kuperwasser C (2009) Stroma in breast development and disease. Semin Cell Dev Biol 21:11–18

    Article  PubMed  Google Scholar 

  8. Shimoda M, Mellody KT, Orimo A (2009) Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin Cell Dev Biol 21:19–25

    Article  PubMed  Google Scholar 

  9. Studebaker AW, Storci G, Werbeck JL, Sansone P, Sasser AK, Tavolari S, Huang T, Chan MW, Marini FC, Rosol TJ, Bonafe M, Hall BM (2008) Fibroblasts isolated from common sites of breast cancer metastasis enhance cancer cell growth rates and invasiveness in an interleukin-6-dependent manner. Cancer Res 68:9087–9095

    Article  PubMed  CAS  Google Scholar 

  10. Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, Stanley ER, Segall JE, Condeelis JS (2005) Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 65:5278–5283

    Article  PubMed  CAS  Google Scholar 

  11. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348

    Article  PubMed  CAS  Google Scholar 

  12. Lanari C, Lamb CA, Fabris VT, Helguero LA, Soldati R, Bottino MC, Giulianelli S, Cerliani JP, Wargon V, Molinolo A (2009) The MPA mouse breast cancer model: evidence for a role of progesterone receptors in breast cancer. Endocr Relat Cancer 16:333–350

    Article  PubMed  CAS  Google Scholar 

  13. Giulianelli S, Cerliani JP, Lamb CA, Fabris VT, Bottino MC, Gorostiaga MA, Novaro V, Gongora A, Baldi A, Molinolo A, Lanari C (2008) Carcinoma-associated fibroblasts activate progesterone receptors and induce hormone independent mammary tumor growth: a role for the FGF-2/FGFR-2 axis. Int J Cancer 123:2518–2531

    Article  PubMed  CAS  Google Scholar 

  14. Perou CM, Sorlie T, Eisen MB, van de RM, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  15. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z, Rasmussen KE, Jones LP, Assefnia S, Chandrasekharan S, Backlund MG, Yin Y, Khramtsov AI, Bastein R, Quackenbush J, Glazer RI, Brown PH, Green JE, Kopelovich L, Furth PA, Palazzo JP, Olopade OI, Bernard PS, Churchill GA, Van Dyke T, Perou CM (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8:R76

    Article  PubMed  Google Scholar 

  16. Casey T, Bond J, Tighe S, Hunter T, Lintault L, Patel O, Eneman J, Crocker A, White J, Tessitore J, Stanley M, Harlow S, Weaver D, Muss H, Plaut K (2009) Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res Treat 114:47–62

    Article  PubMed  CAS  Google Scholar 

  17. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, Hallett M, Park M (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14:518–527

    Article  PubMed  CAS  Google Scholar 

  18. Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, Payette T, Pistone M, Stecker K, Zhang BM, Zhou YX, Varnholt H, Smith B, Gadd M, Chatfield E, Kessler J, Baer TM, Erlander MG, Sgroi DC (2003) Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 100:5974–5979

    Article  PubMed  CAS  Google Scholar 

  19. Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC (2009) Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res 11:R7

    Article  PubMed  Google Scholar 

  20. Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V, Andre S, Piccart M, Campone M, Brain E, Macgrogan G, Petit T, Jassem J, Bibeau F, Blot E, Bogaerts J, Aguet M, Bergh J, Iggo R, Delorenzi M (2009) A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 15:68–74

    Article  PubMed  CAS  Google Scholar 

  21. Institute of Laboratory Animal Resources CoLSNRC (1996) Guide for the care and use of laboratory animals. National Academy Press, Washington, DC

    Google Scholar 

  22. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    Article  PubMed  CAS  Google Scholar 

  23. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  24. Eisen MB, Brown PO (1999) DNA arrays for analysis of gene expression. Methods Enzymol 303:179–205

    Article  PubMed  CAS  Google Scholar 

  25. Hosack DA, Dennis G Jr, Sherman BT, Lane HC, Lempicki RA (2003) Identifying biological themes within lists of genes with EASE. Genome Biol 4:R70

    Article  PubMed  Google Scholar 

  26. Simian M, Molinolo A, Lanari C (2006) Involvement of matrix metalloproteinase activity in hormone-induced mammary tumor regression. Am J Pathol 168:270–279

    Article  PubMed  CAS  Google Scholar 

  27. Lamb C, Simian M, Molinolo A, Pazos P, Lanari C (1999) Regulation of cell growth of a progestin-dependent murine mammary carcinoma in vitro: progesterone receptor involvement in serum or growth factor-induced cell proliferation. J Steroid Biochem Mol Biol 70:133–142

    Article  PubMed  CAS  Google Scholar 

  28. Jacobsen BM, Richer JK, Schittone SA, Horwitz KB (2002) New human breast cancer cells to study progesterone receptor isoform ratio effects and ligand-independent gene regulation. J Biol Chem 277:27793–27800

    Article  PubMed  CAS  Google Scholar 

  29. Jeong JW, Lee KY, Kwak I, White LD, Hilsenbeck SG, Lydon JP, DeMayo FJ (2005) Identification of murine uterine genes regulated in a ligand-dependent manner by the progesterone receptor. Endocrinology 146:3490–3505

    Article  PubMed  CAS  Google Scholar 

  30. Ismail PM, DeMayo FJ, Amato P, Lydon JP (2004) Progesterone induction of calcitonin expression in the murine mammary gland. J Endocrinol 180:287–295

    Article  PubMed  CAS  Google Scholar 

  31. Fernandez-Valdivia R, Mukherjee A, Creighton CJ, Buser AC, DeMayo FJ, Edwards DP, Lydon JP (2008) Transcriptional response of the murine mammary gland to acute progesterone exposure. Endocrinology 149:6236–6250

    Article  PubMed  CAS  Google Scholar 

  32. Santos SJ, Aupperlee MD, Xie J, Durairaj S, Miksicek R, Conrad SE, Leipprandt JR, Tan YS, Schwartz RC, Haslam SZ (2009) Progesterone receptor A-regulated gene expression in mammary organoid cultures. J Steroid Biochem Mol Biol 115:161–172

    Article  PubMed  CAS  Google Scholar 

  33. Richer JK, Jacobsen BM, Manning NG, Abel MG, Wolf DM, Horwitz KB (2002) Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J Biol Chem 277:5209–5218

    Article  PubMed  CAS  Google Scholar 

  34. Kohrmann A, Kammerer U, Kapp M, Dietl J, Anacker J (2009) Expression of matrix metalloproteinases (MMPs) in primary human breast cancer and breast cancer cell lines: new findings and review of the literature. BMC Cancer 9:188

    Article  PubMed  Google Scholar 

  35. Kato S, Pinto M, Carvajal A, Espinoza N, Monso C, Sadarangani A, Villalon M, Brosens JJ, White JO, Richer JK, Horwitz KB, Owen GI (2005) Progesterone increases tissue factor gene expression, procoagulant activity, and invasion in the breast cancer cell line ZR-75-1. J Clin Endocrinol Metab 90:1181–1188

    Article  PubMed  CAS  Google Scholar 

  36. Polo ML, Arnoni MV, Riggio M, Wargon V, Lanari C, Novaro V (2010) Responsiveness to PI3K and MEK inhibitors in breast cancer. Use of a 3D culture system to study pathways related to hormone independence in mice. PloS ONE 5(5):e10786. doi:10.1371/journal.pone.0010786

    Article  PubMed  Google Scholar 

  37. Soldati R, Wargon V, Cerliani JP, Giulianelli S, Vanzulli SI, Gorostiaga MA, Bolado J, do Campo P, Molinolo A, Vollmer G, Lanari C (2009) Inhibition of mammary tumor growth by estrogens: is there a specific role for estrogen receptors alpha and beta? Breast Cancer Res Treat 123:709–724

    Article  PubMed  Google Scholar 

  38. Wargon V, Helguero LA, Bolado J, Rojas P, Novaro V, Molinolo A, Lanari C (2009) Reversal of antiprogestin resistance and progesterone receptor isoform ratio in acquired resistant mammary carcinomas. Breast Cancer Res Treat 116:449–460

    Article  PubMed  CAS  Google Scholar 

  39. Weigelt B, Peterse JL, ‘t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602

    Article  PubMed  CAS  Google Scholar 

  40. Peluso JJ, Pappalardo A (1999) Progesterone maintains large rat granulosa cell viability indirectly by stimulating small granulosa cells to synthesize basic fibroblast growth factor. Biol Reprod 60:290–296

    Article  PubMed  CAS  Google Scholar 

  41. Rider V, Carlone DL, Foster RT (1997) Oestrogen and progesterone control basic fibroblast growth factor mRNA in the rat uterus. J Endocrinol 154:75–84

    Article  PubMed  CAS  Google Scholar 

  42. Shillingford JM, Miyoshi K, Robinson GW, Bierie B, Cao Y, Karin M, Hennighausen L (2003) Proteotyping of mammary tissue from transgenic and gene knockout mice with immunohistochemical markers: a tool to define developmental lesions. J Histochem Cytochem 51:555–565

    Article  PubMed  CAS  Google Scholar 

  43. Grimm SL, Rosen JM (2003) The role of C/EBPbeta in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 8:191–204

    Article  PubMed  Google Scholar 

  44. Radestock Y, Hoang-Vu C, Hombach-Klonisch S (2008) Relaxin reduces xenograft tumour growth of human MDA-MB-231 breast cancer cells. Breast Cancer Res 10:R71

    Article  PubMed  Google Scholar 

  45. Kietz S, Feng S, Agoulnik A, Hombach-Klonisch S (2009) Estrogen and TCDD influence RLN2 gene activity in estrogen receptor-positive human breast cancer cells. Ann N Y Acad Sci 1160:367–373

    Article  PubMed  CAS  Google Scholar 

  46. Binder C, Hagemann T, Husen B, Schulz M, Einspanier A (2002) Relaxin enhances in vitro invasiveness of breast cancer cell lines by up-regulation of matrix metalloproteases. Mol Hum Reprod 8:789–796

    Article  PubMed  CAS  Google Scholar 

  47. Cretu A, Sha X, Tront J, Hoffman B, Liebermann DA (2009) Stress sensor Gadd45 genes as therapeutic targets in cancer. Cancer Ther 7:268–276

    PubMed  CAS  Google Scholar 

  48. Guo B, Godzik A, Reed JC (2001) Bcl-G, a novel pro-apoptotic member of the Bcl-2 family. J Biol Chem 276:2780–2785

    Article  PubMed  CAS  Google Scholar 

  49. Zerbini LF, Libermann TA (2005) Life and death in cancer. GADD45 alpha and gamma are critical regulators of NF-kappaB mediated escape from programmed cell death. Cell Cycle 4:18–20

    Article  PubMed  CAS  Google Scholar 

  50. Burkitt K, Chun SY, Dang DT, Dang LH (2009) Targeting both HIF-1 and HIF-2 in human colon cancer cells improves tumor response to sunitinib treatment. Mol Cancer Ther 8(5):1148–1156

    Google Scholar 

  51. de Candia P, Benera R, Solit DB (2004) A role for Id proteins in mammary gland physiology and tumorigenesis. Adv Cancer Res 92:81–94

    Article  PubMed  Google Scholar 

  52. Hato T, Tabata M, Oike Y (2008) The role of angiopoietin-like proteins in angiogenesis and metabolism. Trends Cardiovasc Med 18:6–14

    Article  PubMed  CAS  Google Scholar 

  53. Murata M, Yudo K, Nakamura H, Chiba J, Okamoto K, Suematsu N, Nishioka K, Beppu M, Inoue K, Kato T, Masuko K (2009) Hypoxia upregulates the expression of angiopoietin-like-4 in human articular chondrocytes: role of angiopoietin-like-4 in the expression of matrix metalloproteinases and cartilage degradation. J Orthop Res 27:50–57

    Article  PubMed  CAS  Google Scholar 

  54. Poon E, Harris AL, Ashcroft M (2009) Targeting the hypoxia-inducible factor (HIF) pathway in cancer. Expert Rev Mol Med 11:e26

    Article  PubMed  Google Scholar 

  55. Sikder HA, Devlin MK, Dunlap S, Ryu B, Alani RM (2003) Id proteins in cell growth and tumorigenesis. Cancer Cell 3:525–530

    Article  PubMed  CAS  Google Scholar 

  56. Stighall M, Manetopoulos C, Axelson H, Landberg G (2005) High ID2 protein expression correlates with a favourable prognosis in patients with primary breast cancer and reduces cellular invasiveness of breast cancer cells. Int J Cancer 115:403–411

    Article  PubMed  CAS  Google Scholar 

  57. Frasor J, Danes JM, Komm B, Chang KC, Lyttle CR, Katzenellenbogen BS (2003) Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology 144:4562–4574

    Article  PubMed  CAS  Google Scholar 

  58. Hong SH, Nah HY, Lee JY, Gye MC, Kim CH, Kim MK (2004) Analysis of estrogen-regulated genes in mouse uterus using cDNA microarray and laser capture microdissection. J Endocrinol 181:157–167

    Article  PubMed  CAS  Google Scholar 

  59. Ace CI, Okulicz WC (2004) Microarray profiling of progesterone-regulated endometrial genes during the rhesus monkey secretory phase. Reprod Biol Endocrinol 2:54

    Article  PubMed  Google Scholar 

  60. Orimo A, Weinberg RA (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5:1597–1601

    Article  PubMed  CAS  Google Scholar 

  61. Bauer M, Su G, Casper C, He R, Rehrauer W, Friedl A (2010) Heterogeneity of gene expression in stromal fibroblasts of human breast carcinomas and normal breast. Oncogene 29:1732–1740

    Article  PubMed  CAS  Google Scholar 

  62. Sadlonova A, Bowe DB, Novak Z, Mukherjee S, Duncan VE, Page GP, Frost AR (2009) Identification of Molecular Distinctions Between Normal Breast-Associated Fibroblasts and Breast Cancer-Associated Fibroblasts. Cancer Microenviron

  63. Singer CF, Gschwantler-Kaulich D, Fink-Retter A, Haas C, Hudelist G, Czerwenka K, Kubista E (2008) Differential gene expression profile in breast cancer-derived stromal fibroblasts. Breast Cancer Res Treat 110:273–281

    Article  PubMed  CAS  Google Scholar 

  64. Rozenchan PB, Carraro DM, Brentani H, Carvalho Mota LD, Bastos EP, Ferreira EN, Torres CH, Katayama ML, Roela RA, Lyra EC, Soares FA, Folgueira MA, Goes JC, Brentani MM (2009) Reciprocal changes in gene expression profiles of cocultured breast epithelial cells and primary fibroblasts. Int J Cancer 125:2767–2777

    Article  PubMed  CAS  Google Scholar 

  65. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6:17–32

    Article  PubMed  CAS  Google Scholar 

  66. Whitelock JM, Murdoch AD, Iozzo RV, Underwood PA (1996) The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem 271:10079–10086

    Article  PubMed  CAS  Google Scholar 

  67. Stuelten CH, DaCosta BS, Arany PR, Karpova TS, Stetler-Stevenson WG, Roberts AB (2005) Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-alpha and TGF-beta. J Cell Sci 118:2143–2153

    Article  PubMed  CAS  Google Scholar 

  68. Yang F, Foekens JA, Yu J, Sieuwerts AM, Timmermans M, Klijn JG, Atkins D, Wang Y, Jiang Y (2006) Laser microdissection and microarray analysis of breast tumors reveal ER-alpha related genes and pathways. Oncogene 25:1413–1419

    Article  PubMed  CAS  Google Scholar 

  69. Maia CJ, Socorro S, Schmitt F, Santos CR (2008) STEAP1 is over-expressed in breast cancer and down-regulated by 17beta-estradiol in MCF-7 cells and in the rat mammary gland. Endocrine 34:108–116

    Article  PubMed  CAS  Google Scholar 

  70. Alves PM, Faure O, Graff-Dubois S, Cornet S, Bolonakis I, Gross DA, Miconnet I, Chouaib S, Fizazi K, Soria JC, Lemonnier FA, Kosmatopoulos K (2006) STEAP, a prostate tumor antigen, is a target of human CD8+ T cells. Cancer Immunol Immunother 55:1515–1523

    Article  PubMed  CAS  Google Scholar 

  71. Anderberg C, Li H, Fredriksson L, Andrae J, Betsholtz C, Li X, Eriksson U, Pietras K (2009) Paracrine signaling by platelet-derived growth factor-CC promotes tumor growth by recruitment of cancer-associated fibroblasts. Cancer Res 69:369–378

    Article  PubMed  CAS  Google Scholar 

  72. Tejada ML, Yu L, Dong J, Jung K, Meng G, Peale FV, Frantz GD, Hall L, Liang X, Gerber HP, Ferrara N (2006) Tumor-driven paracrine platelet-derived growth factor receptor alpha signaling is a key determinant of stromal cell recruitment in a model of human lung carcinoma. Clin Cancer Res 12:2676–2688

    Article  PubMed  CAS  Google Scholar 

  73. Crawford Y, Kasman I, Yu L, Zhong C, Wu X, Modrusan Z, Kaminker J, Ferrara N (2009) PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15:21–34

    Article  PubMed  CAS  Google Scholar 

  74. Pietras K, Pahler J, Bergers G, Hanahan D (2008) Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting. PLoS Med 5:e19

    Article  PubMed  Google Scholar 

  75. Walser TC, Ma X, Kundu N, Dorsey R, Goloubeva O, Fulton AM (2007) Immune-mediated modulation of breast cancer growth and metastasis by the chemokine Mig (CXCL9) in a murine model. J Immunother 30:490–498

    Article  PubMed  CAS  Google Scholar 

  76. Selvamurugan N, Shimizu E, Lee M, Liu T, Li H, Partridge NC (2009) Identification and characterization of Runx2 phosphorylation sites involved in matrix metalloproteinase-13 promoter activation. FEBS Lett 583:1141–1146

    Article  PubMed  CAS  Google Scholar 

  77. Selvamurugan N, Kwok S, Partridge NC (2004) Smad3 interacts with JunB and Cbfa1/Runx2 for transforming growth factor-beta1-stimulated collagenase-3 expression in human breast cancer cells. J Biol Chem 279:27764–27773

    Article  PubMed  CAS  Google Scholar 

  78. Pratap J, Wixted JJ, Gaur T, Zaidi SK, Dobson J, Gokul KD, Hussain S, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2008) Runx2 transcriptional activation of Indian Hedgehog and a downstream bone metastatic pathway in breast cancer cells. Cancer Res 68:7795–7802

    Article  PubMed  CAS  Google Scholar 

  79. Pratap J, Javed A, Languino LR, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2005) The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol 25:8581–8591

    Article  PubMed  CAS  Google Scholar 

  80. Park OJ, Kim HJ, Woo KM, Baek JH, Ryoo HM (2010) FGF2-activated ERK mitogen-activated protein kinase enhances Runx2 acetylation and stabilization. J Biol Chem 285:3568–3574

    Article  PubMed  CAS  Google Scholar 

  81. Kim BG, Kim HJ, Park HJ, Kim YJ, Yoon WJ, Lee SJ, Ryoo HM, Cho JY (2006) Runx2 phosphorylation induced by fibroblast growth factor-2/protein kinase C pathways. Proteomics 6:1166–1174

    Article  PubMed  CAS  Google Scholar 

  82. Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, Wacholder S, Wang Z, Welch R, Hutchinson A, Wang J, Yu K, Chatterjee N, Orr N, Willett WC, Colditz GA, Ziegler RG, Berg CD, Buys SS, McCarty CA, Feigelson HS, Calle EE, Thun MJ, Hayes RB, Tucker M, Gerhard DS, Fraumeni JF Jr, Hoover RN, Thomas G, Chanock SJ (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39:870–874

    Article  PubMed  CAS  Google Scholar 

  83. Meyer KB, Maia AT, O’Reilly M, Teschendorff AE, Chin SF, Caldas C, Ponder BA (2008) Allele-specific up-regulation of FGFR2 increases susceptibility to breast cancer. PLoS Biol 6:e108

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to Julieta Bolado for excellent technical support and to Laboratorios Craveri (Buenos Aires, Argentina) for providing MPA. SG received an award from Avon Foundation for data presented at the AACR Annual Meeting 2008, and an ICRETT Fellowship from the UICC permitting training in Dr Perou’s laboratory. This work was supported by Fundación Sales, SECyT (PICT 2005 and 2007-932), and CONICET (PIP 5351) to CL.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Lanari.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giulianelli, S., Herschkowitz, J.I., Patel, V. et al. MPA-induced gene expression and stromal and parenchymal gene expression profiles in luminal murine mammary carcinomas with different hormonal requirements. Breast Cancer Res Treat 129, 49–67 (2011). https://doi.org/10.1007/s10549-010-1185-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1185-4

Keywords

Navigation