Pathways mediating the effects of cannabidiol on the reduction of breast cancer cell proliferation, invasion, and metastasis

Abstract

Invasion and metastasis of aggressive breast cancer cells are the final and fatal steps during cancer progression. Clinically, there are still limited therapeutic interventions for aggressive and metastatic breast cancers available. Therefore, effective, targeted, and non-toxic therapies are urgently required. Id-1, an inhibitor of basic helix-loop-helix transcription factors, has recently been shown to be a key regulator of the metastatic potential of breast and additional cancers. We previously reported that cannabidiol (CBD), a cannabinoid with a low toxicity profile, down-regulated Id-1 gene expression in aggressive human breast cancer cells in culture. Using cell proliferation and invasion assays, cell flow cytometry to examine cell cycle and the formation of reactive oxygen species, and Western analysis, we determined pathways leading to the down-regulation of Id-1 expression by CBD and consequently to the inhibition of the proliferative and invasive phenotype of human breast cancer cells. Then, using the mouse 4T1 mammary tumor cell line and the ranksum test, two different syngeneic models of tumor metastasis to the lungs were chosen to determine whether treatment with CBD would reduce metastasis in vivo. We show that CBD inhibits human breast cancer cell proliferation and invasion through differential modulation of the extracellular signal-regulated kinase (ERK) and reactive oxygen species (ROS) pathways, and that both pathways lead to down-regulation of Id-1 expression. Moreover, we demonstrate that CBD up-regulates the pro-differentiation factor, Id-2. Using immune competent mice, we then show that treatment with CBD significantly reduces primary tumor mass as well as the size and number of lung metastatic foci in two models of metastasis. Our data demonstrate the efficacy of CBD in pre-clinical models of breast cancer. The results have the potential to lead to the development of novel non-toxic compounds for the treatment of breast cancer metastasis, and the information gained from these experiments broaden our knowledge of both Id-1 and cannabinoid biology as it pertains to cancer progression.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

CBD:

Cannabidiol

Δ9-THC:

Δ9-Tetrahydrocannabinol

ERK:

Extracellular signal-regulated kinase

FBS:

Fetal bovine serum

Id:

Inhibitor of DNA binding

ROS:

Reactive oxygen species

TOC:

α-Tocopherol

References

  1. 1.

    Braun S, Harbeck N (2001) Molecular markers of metastasis in breast cancer: current understanding and prospects for novel diagnosis and prevention. Expert Rev Mol Med 3:1–14

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Perk J, Iavarone A, Benezra R (2005) Id family of helix-loop-helix proteins in cancer. Nat Rev Cancer 5(8):603–614

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Fong S, Itahana Y, Sumida T, Singh J, Coppe JP, Liu Y, Richards PC, Bennington JL, Lee NM, Debs RJ et al (2003) Id-1 as a molecular target in therapy for breast cancer cell invasion and metastasis. Proc Natl Acad Sci USA 100(23):13543–13548

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massague J (2005) Genes that mediate breast cancer metastasis to lung. Nature 436(7050):518–524

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Coppe JP, Smith AP, Desprez PY (2003) Id proteins in epithelial cells. Exp Cell Res 285(1):131–145

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Gupta GP, Perk J, Acharyya S, de Candia P, Mittal V, Todorova-Manova K, Gerald WL, Brogi E, Benezra R, Massague J (2007) ID genes mediate tumor reinitiation during breast cancer lung metastasis. Proc Natl Acad Sci USA 104(49):19506–19511

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Swarbrick A, Roy E, Allen T, Bishop JM (2008) Id1 cooperates with oncogenic Ras to induce metastatic mammary carcinoma by subversion of the cellular senescence response. Proc Natl Acad Sci USA 105(14):5402–5407

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Pertwee RG (1997) Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 74(November):129–180

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    McPartland JM, Russo EB (2001) Cannabis and cannabis extract: greater than the sum of the parts? J Cannabis Ther 1:103–132

    Article  CAS  Google Scholar 

  10. 10.

    McAllister SD, Glass M (2002) CB(1) and CB(2) receptor-mediated signalling: a focus on endocannabinoids. Prostaglandins Leukot Essent Fatty Acids 66(2–3):161–171

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Showalter VM, Compton DR, Martin BR, Abood ME (1996) Evaluation of binding in a transfected cell line expressing a peripheral cannabinoid receptor (CB2): identification of cannabinoid receptor subtype selective ligands. J Pharmacol Exp Ther 278:989–999

    PubMed  CAS  Google Scholar 

  12. 12.

    Alozie SO, Martin BR, Harris LS, Dewey WL (1980) 3H-delta 9-Tetrahydrocannabinol, 3H-cannabinol and 3H-cannabidiol: penetration and regional distribution in rat brain. Pharmacol Biochem Behav 12(2):217–218

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Walter L, Franklin A, Witting A, Wade C, Xie Y, Kunos G, Mackie K, Stella N (2003) Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J Neurosci 23(4):1398–1405

    PubMed  CAS  Google Scholar 

  14. 14.

    Brady KT, Balster RL (1980) The effects of delta 9-tetrahydrocannabinol alone and in combination with cannabidiol on fixed-interval performance in rhesus monkeys. Psychopharmacology 72(1):21–26

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Hiltunen AJ, Jarbe TU (1986) Cannabidiol attenuates delta 9-tetrahydrocannabinol-like discriminative stimulus effects of cannabinol. Eur J Pharmacol 125(2):301–304

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Hiltunen AJ, Jarbe TU, Wangdahl K (1988) Cannabinol and cannabidiol in combination: temperature, open-field activity, and vocalization. Pharmacol Biochem Behav 30(3):675–678

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Hollister LE, Gillespie H (1975) Interactions in man of delta-9-tetrahydrocannabinol. II. cannabinol and cannabidiol. Clin Pharmacol Ther 18(1):80–83

    PubMed  CAS  Google Scholar 

  18. 18.

    Abood ME, Raman C, Kim K, Moore DH (2004) Evaluation of cannabidiol in the ALS mouse model. In: ALS and other motor neuron diseases, 2–4 December 2004. Talyor and Francis, Philadelphia, USA, pp 92–93 (poster 61)

  19. 19.

    Nurmikko TJ, Serpell MG, Hoggart B, Toomey PJ, Morlion BJ, Haines D (2007) Sativex successfully treats neuropathic pain characterised by allodynia: a randomised, double-blind, placebo-controlled clinical trial. Pain 133(1–3):210–220

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Rog DJ, Nurmikko TJ, Young CA (2007) Oromucosal delta9-tetrahydrocannabinol/cannabidiol for neuropathic pain associated with multiple sclerosis: an uncontrolled, open-label, 2-year extension trial. Clin Ther 29(9):2068–2079

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    McAllister SD, Christian RT, Horowitz MP, Garcia A, Desprez PY (2007) Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells. Mol Cancer Ther 6(11):2921–2927

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Ligresti A, Moriello AS, Starowicz K, Matias I, Pisanti S, De Petrocellis L, Laezza C, Portella G, Bifulco M, Di Marzo V (2006) Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. J Pharmacol Exp Ther 318(3):1375–1387

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Kaplan BL, Springs AE, Kaminski NE (2008) The profile of immune modulation by cannabidiol (CBD) involves deregulation of nuclear factor of activated T cells (NFAT). Biochem Pharmacol 76(6):726–737

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Malfait AM, Gallily R, Sumariwalla PF, Malik AS, Andreakos E, Mechoulam R, Feldmann M (2000) The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. Proc Natl Acad Sci USA 97(17):9561–9566

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    McAllister SD, Chan C, Taft RJ, Luu T, Abood ME, Moore DH, Aldape K, Yount G (2005) Cannabinoids selectively inhibit proliferation and induce death of cultured human glioblastoma multiforme cells. J NeuroOncol 74(1):31–40

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Lin CQ, Singh J, Murata K, Itahana Y, Parrinello S, Liang SH, Gillett CE, Campisi J, Desprez PY (2000) A role for Id-1 in the aggressive phenotype and steroid hormone response of human breast cancer cells. Cancer Res 60(5):1332–1340

    PubMed  CAS  Google Scholar 

  27. 27.

    Guzman M (2003) Cannabinoids: potential anticancer agents. Nat Rev Cancer 3(10):745–755

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    McKallip RJ, Jia W, Schlomer J, Warren JW, Nagarkatti PS, Nagarkatti M (2006) Cannabidiol-induced apoptosis in human leukemia cells: a novel role of cannabidiol in the regulation of p22phox and Nox4 expression. Mol Pharmacol 70(3):897–908

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Ramer R, Hinz B (2008) Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinases-1. J Natl Cancer Inst 100(1):59–69

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Itahana Y, Singh J, Sumida T, Coppe JP, Parrinello S, Bennington JL, Desprez PY (2003) Role of Id-2 in the maintenance of a differentiated and noninvasive phenotype in breast cancer cells. Cancer Res 63(21):7098–7105

    PubMed  CAS  Google Scholar 

  31. 31.

    Stighall M, Manetopoulos C, Axelson H, Landberg G (2005) High ID2 protein expression correlates with a favourable prognosis in patients with primary breast cancer and reduces cellular invasiveness of breast cancer cells. Int J Cancer 115(3):403–411

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Massi P, Vaccani A, Bianchessi S, Costa B, Macchi P, Parolaro D (2006) The non-psychoactive cannabidiol triggers caspase activation and oxidative stress in human glioma cells. Cell Mol Life Sci 63(17):2057–2066

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Andersen MH, Sorensen RB, Schrama D, Svane IM, Becker JC, Thor Straten P (2008) Cancer treatment: the combination of vaccination with other therapies. Cancer Immunol Immunother 57(11):1735–1743

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Fong S, Debs RJ, Desprez PY (2004) Id genes and proteins as promising targets in cancer therapy. Trends Mol Med 10(8):387–392

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Ling MT, Wang X, Zhang X, Wong YC (2006) The multiple roles of Id-1 in cancer progression. Differentiation 74(9–10):481–487

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Derkinderen P, Enslen H, Girault JA (1999) The ERK/MAP-kinases cascade in the nervous system. Neuroreport 10(5):R24–R34

    PubMed  CAS  Google Scholar 

  37. 37.

    Pumiglia KM, Decker SJ (1997) Cell cycle arrest mediated by the MEK/mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA 94(2):448–452

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Mohr S, McCormick TS, Lapetina EG (1998) Macrophages resistant to endogenously generated nitric oxide-mediated apoptosis are hypersensitive to exogenously added nitric oxide donors: dichotomous apoptotic response independent of caspase 3 and reversal by the mitogen-activated protein kinase kinase (MEK) inhibitor PD 098059. Proc Natl Acad Sci USA 95(9):5045–5050

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    York RD, Yao H, Dillon T, Ellig CL, Eckert SP, McCleskey EW, Stork PJ (1998) Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392(6676):622–626

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Galve-Roperh I, Sanchez C, Cortes ML, del Pulgar TG, Izquierdo M, Guzman M (2000) Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nat Med 6(3):313–319

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Sarfaraz S, Afaq F, Adhami VM, Malik A, Mukhtar H (2006) Cannabinoid receptor agonist-induced apoptosis of human prostate cancer cells LNCaP proceeds through sustained activation of ERK1/2 leading to G1 cell cycle arrest. J Biol Chem 281(51):39480–39491

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Velasco G, Galve-Roperh I, Sanchez C, Blazquez C, Guzman M (2004) Hypothesis: cannabinoid therapy for the treatment of gliomas? Neuropharmacology 47(3):315–323

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Mo FM, Offertaler L, Kunos G (2004) Atypical cannabinoid stimulates endothelial cell migration via a Gi/Go-coupled receptor distinct from CB1, CB2 or EDG-1. Eur J Pharmacol 489(1–2):21–27

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4(3):181–189

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Mimeault M, Hauke R, Batra SK (2008) Recent advances on the molecular mechanisms involved in the drug resistance of cancer cells and novel targeting therapies. Clin Pharmacol Ther 83(5):673–691

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Cameron MD, Schmidt EE, Kerkvliet N, Nadkarni KV, Morris VL, Groom AC, Chambers AF, MacDonald IC (2000) Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res 60(9):2541–2546

    PubMed  CAS  Google Scholar 

  47. 47.

    Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82(1):4–6

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Dent P, Curiel DT, Fisher PB, Grant S (2009) Synergistic combinations of signaling pathway inhibitors: mechanisms for improved cancer therapy. Drug Resist Updat 12(3):65–73

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Drs. Claudia Gravekamp and Yoko Itahana for helpful scientific discussions, and Dr. Liliana Soroceanu for critical reading of the manuscript. This study was supported by the National Institutes of Health (CA102412, CA111723, DA09978, CA082548, and CA135281), and the Research Institute at California Pacific Medical Center.

Conflict of interest

The authors have declared that no competing interests exist.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sean D. McAllister.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10549-012-2007-7.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McAllister, S.D., Murase, R., Christian, R.T. et al. Pathways mediating the effects of cannabidiol on the reduction of breast cancer cell proliferation, invasion, and metastasis. Breast Cancer Res Treat 129, 37–47 (2011). https://doi.org/10.1007/s10549-010-1177-4

Download citation

Keywords

  • Id-1
  • Id-2
  • Helix-loop-helix
  • Cannabinoid
  • ERK
  • ROS
  • Lung metastasis