Skip to main content


Log in

Screening RAD51C nucleotide alterations in patients with a family history of breast and ovarian cancer

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript


It has been reported that one biallelic missense mutation in the RAD51C gene was found in a Fanconi anemia-like disorder and six monoallelic pathogenic mutations were identified in 480 BRCA1/2 negative breast and ovarian cancer pedigrees but not in 620 pedigrees with breast cancer only. Additionally, the RAD51C gene was reported to be involved in gene fusion events in the MCF-7 breast cancer cell line. We performed complete sequencing and fusion gene breakpoint screening to detect deleterious mutations and chromosomal structure change in the RAD51C gene. Ninety-two hereditary gynecological cancer patients with a family history of breast and ovarian cancer but not carrying BRCA1/2 mutations were studied. In addition, 46 breast cancer cell lines were screened for the gene fusion events. Ten DNA sequence variants but no deleterious mutations were identified. We did not observe the occurrence of the known gene fusion either. We were unable to confirm the contribution of the RAD51C gene to hereditary breast and ovarian cancer (HBOC) in this relatively small cohort. Nonetheless, larger studies in diverse populations to fully investigate the mutation spectrum of the RAD51C gene are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1


  1. Fackenthal JD, Olopade OI (2007) Breast cancer risk associated with brca1 and brca2 in diverse populations. Nat Rev Cancer 7(12):937–948. doi:10.1038/nrc2054

    Article  CAS  PubMed  Google Scholar 

  2. Sowter HM, Ashworth A (2005) Brca1 and brca2 as ovarian cancer susceptibility genes. Carcinogenesis 26(10):1651–1656. doi:10.1093/carcin/bgi136

    Article  CAS  PubMed  Google Scholar 

  3. Reid S, Schindler D, Hanenberg H, Barker K, Hanks S, Kalb R, Neveling K, Kelly P, Seal S, Freund M, Wurm M, Batish SD, Lach FP, Yetgin S, Neitzel H, Ariffin H, Tischkowitz M, Mathew CG, Auerbach AD, Rahman N (2007) Biallelic mutations in palb2 cause Fanconi anemia subtype fa-n and predispose to childhood cancer. Nat Genet 39(2):162–164. doi:10.1038/ng1947

    Article  CAS  PubMed  Google Scholar 

  4. Xia B, Dorsman JC, Ameziane N, de Vries Y, Rooimans MA, Sheng Q, Pals G, Errami A, Gluckman E, Llera J, Wang W, Livingston DM, Joenje H, de Winter JP (2007) Fanconi anemia is associated with a defect in the brca2 partner palb2. Nat Genet 39(2):159–161. doi:10.1038/ng1942

    Article  CAS  PubMed  Google Scholar 

  5. Vaz F, Hanenberg H, Schuster B, Barker K, Wiek C, Erven V, Neveling K, Endt D, Kesterton I, Autore F, Fraternali F, Freund M, Hartmann L, Grimwade D, Roberts RG, Schaal H, Mohammed S, Rahman N, Schindler D, Mathew CG (2010) Mutation of the rad51c gene in a Fanconi anemia-like disorder. Nat Genet 42(5):406–409. doi:10.1038/ng.570

    Article  CAS  PubMed  Google Scholar 

  6. Meindl A, Hellebrand H, Wiek C, Erven V, Wappenschmidt B, Niederacher D, Freund M, Lichtner P, Hartmann L, Schaal H, Ramser J, Honisch E, Kubisch C, Wichmann HE, Kast K, Deissler H, Engel C, Muller-Myhsok B, Neveling K, Kiechle M, Mathew CG, Schindler D, Schmutzler RK, Hanenberg H (2010) Germline mutations in breast and ovarian cancer pedigrees establish rad51c as a human cancer susceptibility gene. Nat Genet 42(5):410–414. doi:10.1038/ng.569

    Article  CAS  PubMed  Google Scholar 

  7. Hampton OA, Den Hollander P, Miller CA, Delgado DA, Li J, Coarfa C, Harris RA, Richards S, Scherer SE, Muzny DM, Gibbs RA, Lee AV, Milosavljevic A (2009) A sequence-level map of chromosomal breakpoints in the mcf-7 breast cancer cell line yields insights into the evolution of a cancer genome. Genome Res 19(2):167–177. doi:10.1101/gr.080259.108

    Article  CAS  PubMed  Google Scholar 

  8. D’Andrea AD (2010) Susceptibility pathways in Fanconi’s anemia and breast cancer. N Engl J Med 362(20):1909–1919. doi:10.1056/NEJMra0809889

    Article  PubMed  Google Scholar 

  9. Joenje H, Patel KJ (2001) The emerging genetic and molecular basis of Fanconi anemia. Nat Rev Genet 2(6):446–457. doi:10.1038/3507659035076590

    Article  CAS  PubMed  Google Scholar 

  10. Wang W (2007) Emergence of a DNA-damage response network consisting of Fanconi anemia and brca proteins. Nat Rev Genet 8(10):735–748. doi:10.1038/nrg2159

    Article  CAS  PubMed  Google Scholar 

  11. Moldovan GL, D’Andrea AD (2009) How the Fanconi anemia pathway guards the genome. Annu Rev Genet 43:223–249. doi:10.1146/annurev-genet-102108-134222

    Article  CAS  PubMed  Google Scholar 

  12. Berwick M, Satagopan JM, Ben-Porat L, Carlson A, Mah K, Henry R, Diotti R, Milton K, Pujara K, Landers T, Dev Batish S, Morales J, Schindler D, Hanenberg H, Hromas R, Levran O, Auerbach AD (2007) Genetic heterogeneity among Fanconi anemia heterozygotes and risk of cancer. Cancer Res 67(19):9591–9596. doi:10.1158/0008-5472.CAN-07-1501

    Article  CAS  PubMed  Google Scholar 

  13. Barlund M, Monni O, Kononen J, Cornelison R, Torhorst J, Sauter G, Kallioniemi O-P, Kallioniemi A (2000) Multiple genes at 17q23 undergo amplification and overexpression in breast cancer. Cancer Res 60(19):5340–5344

    CAS  PubMed  Google Scholar 

  14. Wu GJ, Sinclair CS, Paape J, Ingle JN, Roche PC, James CD, Couch FJ (2000) 17q23 amplifications in breast cancer involve the pat1, rad51c, ps6k, and sigma1b genes. Cancer Res 60(19):5371–5375

    CAS  PubMed  Google Scholar 

  15. French CA, Masson JY, Griffin CS, O’Regan P, West SC, Thacker J (2002) Role of mammalian rad51l2 (rad51c) in recombination and genetic stability. J Biol Chem 277(22):19322–19330. doi:10.1074/jbc.M201402200M201402200

    Article  CAS  PubMed  Google Scholar 

  16. Thacker J (2005) The rad51 gene family, genetic instability and cancer. Cancer Lett 219(2):125–135. doi:10.1016/j.canlet.2004.08.018

    Article  CAS  PubMed  Google Scholar 

  17. Sharan SK, Kuznetsov SG (2007) Resolving rad51c function in late stages of homologous recombination. Cell Div 2:15. doi:10.1186/1747-1028-2-15

    Article  PubMed  Google Scholar 

  18. Badie S, Liao C, Thanasoula M, Barber P, Hill MA, Tarsounas M (2009) Rad51c facilitates checkpoint signaling by promoting chk2 phosphorylation. J Cell Biol 185(4):587–600. doi:10.1083/jcb.200811079

    Article  CAS  PubMed  Google Scholar 

  19. Smeenk G, de Groot AJ, Romeijn RJ, van Buul PP, Zdzienicka MZ, Mullenders LH, Pastink A, Godthelp BC (2010) Rad51c is essential for embryonic development and haploinsufficiency causes increased DNA damage sensitivity and genomic instability. Mutat Res 689(1–2):50–58. doi:10.1016/j.mrfmmm.2010.05.001

    CAS  PubMed  Google Scholar 

Download references


We would like to thank all the families for providing samples voluntarily for this study. We appreciate clinical genetic counseling done by Cassandra Gulden and Sarah Jackson. This work was supported by grant from NCI Specialized Program of Research Excellence (SPORE) in Breast Cancer, and Noreen Frazer Foundation and the Falk Medical Research Trust.

Conflict of interest

None of the authors has any potential financial conflict of interest related to this manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Olufunmilayo I. Olopade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Y., Zhang, J., Hope, K. et al. Screening RAD51C nucleotide alterations in patients with a family history of breast and ovarian cancer. Breast Cancer Res Treat 124, 857–861 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: