Skip to main content

Advertisement

Log in

The rexinoid bexarotene represses cyclin D1 transcription by inducing the DEC2 transcriptional repressor

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Bexarotene is an RXR-selective vitamin A analog that has been shown to prevent ER-negative mammary tumorigenesis in animal models. While investigating the mechanism by which bexarotene prevents ER-negative breast cancer development, we found that the expression of cyclin D1, a critical cell cycle promoter, was repressed by bexarotene in vitro and in vivo. Time course and cycloheximide experiments show that repression of cyclin D1 is a late effect and requires new protein synthesis. Previously we discovered that DEC2 (differentially expressed in chondrocytes-2), a helix–loop–helix transcription repressor, was induced by bexarotene in human mammary epithelial cells. Therefore, we hypothesized that bexarotene represses the transcription of cyclin D1 through induction of DEC2. Luciferase reporter studies demonstrated that either bexarotene treatment or forced expression of DEC2 can repress the transcription of a cyclin D1 promoter reporter by affecting the basal transcriptional activity. Results from chromatin immunoprecipitation experiments showed that bexarotene treatment causes the recruitment of DEC2 and HDAC1 (histone deacetylase 1) to the cyclin D1 promoter. Co-immunoprecipitation confirms the interaction between DEC2 and HDAC1, suggesting that the recruitment of HDAC1 to the cyclin D1 promoter is through DEC2. Trichostatin A, a HDAC inhibitor, reverses the cyclin D1 repression by bexarotene, suggesting that repression of cyclin D1 involves histone deacetylation. Knock-down of DEC2 by siRNA abolishes the cyclin D1 repression, further supporting our hypothesis. Finally, we demonstrated that overexpression of DEC2 dramatically inhibited cell proliferation and repressed the expression of cyclin D1 in human mammary epithelial cells. These results suggest that bexarotene down-regulates cyclin D1 through induction of DEC2, followed by recruitment of HDAC1 to the cyclin D1 promoter causing transcriptional repression. By elucidating the mechanism by which rexinoids inhibit cell proliferation, it will be possible to develop more effective and less toxic drugs to prevent ER-negative breast cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HMEC:

Human mammary epithelial cells

RAR:

Retinoic acid receptor

RXR:

Retinoid X receptor

RT-PCR:

Reverse transcriptase PCR

ER:

Estrogen receptor

SERM:

Selective estrogen receptor modulator

DEC2:

Differentially expressed in chondrocyte 2

HDAC1:

Histone deacetylase 1

References

  1. Vogel VG, Costantino JP, Wickerham DL et al (2006) Effects of tamoxifen versus raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. Jama 295:2727–2741

    Article  PubMed  CAS  Google Scholar 

  2. Cuzick J, Powles T, Veronesi U et al (2003) Overview of the main outcomes in breast-cancer prevention trials. Lancet 361:296–300

    Article  PubMed  CAS  Google Scholar 

  3. Li Y, Zhang Y, Hill J et al (2007) The Rexinoid LG100268 prevents the development of preinvasive and invasive estrogen receptor negative tumors in MMTV-erbB2 mice. Clin Cancer Res 13:6224–6231

    Article  PubMed  CAS  Google Scholar 

  4. Wu K, Kim HT, Rodriquez JL et al (2002) Suppression of mammary tumorigenesis in transgenic mice by the RXR-selective retinoid, LGD1069. Cancer Epidemiol Biomarkers Prev 11:467–474

    PubMed  CAS  Google Scholar 

  5. Wu K, Kim HT, Rodriquez JL et al (2000) 9-cis-Retinoic acid suppresses mammary tumorigenesis in C3(1)-simian virus 40 T antigen-transgenic mice. Clin Cancer Res 6:3696–3704

    PubMed  CAS  Google Scholar 

  6. Wu K, Zhang Y, Xu XC et al (2002) The retinoid X receptor-selective retinoid, LGD1069, prevents the development of estrogen receptor-negative mammary tumors in transgenic mice. Cancer Res 62:6376–6380

    PubMed  CAS  Google Scholar 

  7. Yang LM, Tin UC, Wu K, Brown P (1999) Role of retinoid receptors in the prevention and treatment of breast cancer. J Mammary Gland Biol Neoplasia 4:377–388

    Article  PubMed  CAS  Google Scholar 

  8. Li Y, Zhang Y, Hill J et al (2008) The rexinoid, bexarotene, prevents the development of premalignant lesions in MMTV-erbB2 mice. Br J Cancer 98:1380–1388

    Article  PubMed  CAS  Google Scholar 

  9. Wu K, Dupre E, Kim H et al (2006) Receptor-selective retinoids inhibit the growth of normal and malignant breast cells by inducing G1 cell cycle blockade. Breast Cancer Res Treat 96:147–157

    Article  PubMed  CAS  Google Scholar 

  10. Landis MW, Pawlyk BS, Li T, Sicinski P, Hinds PW (2006) Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell 9:13–22

    Article  PubMed  CAS  Google Scholar 

  11. Yu Q, Sicinska E, Geng Y et al (2006) Requirement for CDK4 kinase function in breast cancer. Cancer Cell 9:23–32

    Article  PubMed  CAS  Google Scholar 

  12. Herber B, Truss M, Beato M, Muller R (1994) Inducible regulatory elements in the human cyclin D1 promoter. Oncogene 9:1295–1304

    PubMed  CAS  Google Scholar 

  13. Albanese C, Johnson J, Watanabe G et al (1995) Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J Biol Chem 270:23589–23597

    Article  PubMed  CAS  Google Scholar 

  14. Li Y, Song X, Ma Y, Liu J, Yang D, Yan B (2004) DNA binding, but not interaction with Bmal1, is responsible for DEC1-mediated transcription regulation of the circadian gene mPer1. Biochem J 382:895–904

    Article  PubMed  CAS  Google Scholar 

  15. Kong G, Kim HT, Wu K et al (2005) The retinoid X receptor-selective retinoid, LGD1069, down-regulates cyclooxygenase-2 expression in human breast cells through transcription factor crosstalk: implications for molecular-based chemoprevention. Cancer Res 65:3462–3469

    Article  PubMed  CAS  Google Scholar 

  16. DeNardo DG, Kim HT, Hilsenbeck S, Cuba V, Tsimelzon A, Brown PH (2005) Global gene expression analysis of estrogen receptor transcription factor cross talk in breast cancer: identification of estrogen-induced/activator protein-1-dependent genes. Mol Endocrinol 19:362–378

    Article  PubMed  CAS  Google Scholar 

  17. Liu Y, Ludes-Meyers J, Zhang Y et al (2002) Inhibition of AP-1 transcription factor causes blockade of multiple signal transduction pathways and inhibits breast cancer growth. Oncogene 21:7680–7689

    Article  PubMed  CAS  Google Scholar 

  18. Kim HT, Kong G, Denardo D et al (2006) Identification of biomarkers modulated by the rexinoid LGD1069 (bexarotene) in human breast cells using oligonucleotide arrays. Cancer Res 66:12009–12018

    Article  PubMed  CAS  Google Scholar 

  19. Azmi S, Ozog A, Taneja R (2004) Sharp-1/DEC2 inhibits skeletal muscle differentiation through repression of myogenic transcription factors. J Biol Chem 279:52643–52652

    Article  PubMed  CAS  Google Scholar 

  20. Li Y, Xie M, Song X et al (2003) DEC1 negatively regulates the expression of DEC2 through binding to the E-box in the proximal promoter. J Biol Chem 278:16899–16907

    Article  PubMed  CAS  Google Scholar 

  21. Fujimoto K, Hamaguchi H, Hashiba T et al (2007) Transcriptional repression by the basic helix–loop–helix protein Dec2: multiple mechanisms through E-box elements. Int J Mol Med 19:925–932

    PubMed  CAS  Google Scholar 

  22. Sun H, Taneja R (2000) Stra13 expression is associated with growth arrest and represses transcription through histone deacetylase (HDAC)-dependent and HDAC-independent mechanisms. Proc Natl Acad Sci USA 97:4058–4063

    Article  PubMed  CAS  Google Scholar 

  23. Donnellan R, Chetty R (1998) Cyclin D1 and human neoplasia. Mol Pathol 51:1–7

    Article  PubMed  CAS  Google Scholar 

  24. Dragnev KH, Petty WJ, Shah SJ et al (2007) A proof-of-principle clinical trial of bexarotene in patients with non-small cell lung cancer. Clin Cancer Res 13:1794–1800

    Article  PubMed  CAS  Google Scholar 

  25. Brown PH, Arun B, Miller A, et al. (2007) Prevention of breast cancer using rexinoids: Results of a phase II biomarker modulation trial using bexarone in women at high risk of breast cancer. In: Proceedings of the San Antonio Breast Cancer Symposium

  26. Boudjelal M, Taneja R, Matsubara S, Bouillet P, Dolle P, Chambon P (1997) Overexpression of Stra13, a novel retinoic acid-inducible gene of the basic helix–loop–helix family inhibits mesodermal and promotes neuronal differentiation of P19 cells. Genes Dev 11:2052–2065

    Article  PubMed  CAS  Google Scholar 

  27. Shen M, Kawamoto T, Yan W et al (1997) Molecular characterization of the novel basic helix–loop–helix protein DEC1 expressed in differentiated human embryo chondrocytes. Biochem Biophys Res Commun 236:294–298

    Article  PubMed  CAS  Google Scholar 

  28. Fujimoto K, Shen M, Noshiro M et al (2001) Molecular cloning and characterization of DEC2, a new member of basic helix–loop–helix proteins. Biochem Biophys Res Commun 280:164–171

    Article  PubMed  CAS  Google Scholar 

  29. Li Y, Zhang H, Xie M et al (2002) Abundant expression of Dec1/stra13/sharp2 in colon carcinoma: its antagonizing role in serum deprivation-induced apoptosis and selective inhibition of procaspase activation. Biochem J 367:413–422

    Article  PubMed  CAS  Google Scholar 

  30. Sun SY, Wan H, Yue P, Hong WK, Lotan R (2000) Evidence that retinoic acid receptor beta induction by retinoids is important for tumor cell growth inhibition. J Biol Chem 275:17149–17153

    Article  PubMed  CAS  Google Scholar 

  31. Zawel L, Yu J, Torrance CJ et al (2002) DEC1 is a downstream target of TGF-beta with sequence-specific transcriptional repressor activities. Proc Natl Acad Sci USA 99:2848–2853

    Article  PubMed  CAS  Google Scholar 

  32. Azmi S, Sun H, Ozog A, Taneja R (2003) mSharp-1/DEC2, a basic helix–loop–helix protein functions as a transcriptional repressor of E box activity and Stra13 expression. J Biol Chem 278:20098–20109

    Article  PubMed  CAS  Google Scholar 

  33. Li Y, Xie M, Yang J et al (2006) The expression of antiapoptotic protein survivin is transcriptionally upregulated by DEC1 primarily through multiple sp1 binding sites in the proximal promoter. Oncogene 25:3296–3306

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Julie Mayer for critical review and helpful discussion of the manuscript. We thank Kimberly Young-Jenkins for her assistance in submitting this manuscript. This work was supported by: NIH RO1 CA078480 and a Postdoctoral Fellowship from The Susan G. Komen Breast Cancer Foundation to Yuxin Li.

Conflict of interest

Reid P. Bissonnette is employed in the Department of Retinoid Research, Ligand Pharmaceuticals, Inc., San Diego, CA 92121. W. W. Lamph is a previous employee of Ligand Pharmaceuticals. Powel H. Brown serves as a Scientific Advisory Board member for Susan G. for the Cure, not for profit organization. All other authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Powel H. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Shen, Q., Kim, HT. et al. The rexinoid bexarotene represses cyclin D1 transcription by inducing the DEC2 transcriptional repressor. Breast Cancer Res Treat 128, 667–677 (2011). https://doi.org/10.1007/s10549-010-1083-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1083-9

Keywords

Navigation