Skip to main content

Advertisement

Log in

The liver receptor homolog-1 regulates estrogen receptor expression in breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Estrogen receptor-α (ER) is expressed in the great majority of breast cancers, and the inhibition of ER action is a key part of breast cancer treatment. The inhibition of ER action is achieved using anti-estrogens, primarily tamoxifen, and with aromatase inhibitors that inhibit estrogen biosynthesis, thereby preventing ER activation. However, resistance to these therapies is common. With the aim of identifying new molecular targets for breast cancer therapy, we have identified the liver receptor homolog-1 (LRH-1) as an estrogen-regulated gene. RNA interference and over-expression studies were used to investigate the role of the LRH-1 in regulating breast cancer growth and to identify the targets of an LRH-1 action. Promoter recruitment was determined using reporter gene and chromatin immunoprecipitation (ChIP) assays. We show that LRH-1 regulates breast cancer cell growth by regulating the ER expression. Reporter gene and in vitro DNA-binding assays identified an LRH-1-binding site in the ER gene promoter, and ChIP assays have demonstrated in vivo binding at this site. We also provide evidence for new LRH-1 variants in breast cancer cells arising from the use of alternative promoters. Previous studies have shown that LRH-1 functions in estrogen biosynthesis by regulating aromatase expression. Our findings extend this by highlighting LRH-1 as a key regulator of the estrogen response in breast cancer cells through the regulation of ER expression. Hence, inhibition of LRH-1 could provide a powerful new approach for the treatment of endocrine-resistant breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Osborne CK (1998) Tamoxifen in the treatment of breast cancer. N Engl J Med 339(22):1609–1618

    Article  PubMed  CAS  Google Scholar 

  2. Ali S, Coombes RC (2002) Endocrine-responsive breast cancer and strategies for combatting resistance. Nat Rev Cancer 2:101–112

    Article  PubMed  Google Scholar 

  3. Johnston SR, Dowsett M (2003) Aromatase inhibitors for breast cancer: lessons from the laboratory. Nat Rev Cancer 3(11):821–831

    Article  PubMed  CAS  Google Scholar 

  4. Chen S et al (2006) What do we know about the mechanisms of aromatase inhibitor resistance? J Steroid Biochem Mol Biol 102(1–5):232–240

    Article  PubMed  CAS  Google Scholar 

  5. Couse JF, Korach KS (1999) Estrogen receptor null mice: what have we learned and where will they lead us? Endocr Rev 20(3):358–417

    Article  PubMed  CAS  Google Scholar 

  6. Ponglikitmongkol M, Green S, Chambon P (1988) Genomic organization of the human oestrogen receptor gene. EMBO J 7(11):3385–3388

    PubMed  CAS  Google Scholar 

  7. Gosden JR, Middleton PG, Rout D (1986) Localization of the human oestrogen receptor gene to chromosome 6q24–q27 by in situ hybridization. Cytogenet Cell Genet 43(3–4):218–220

    Article  PubMed  CAS  Google Scholar 

  8. Flouriot G et al (1998) Differentially expressed messenger RNA isoforms of the human estrogen receptor-alpha gene are generated by alternative splicing and promoter usage. Mol Endocrinol 12(12):1939–1954

    Article  PubMed  CAS  Google Scholar 

  9. Kos M et al (2001) Minireview: genomic organization of the human ERalpha gene promoter region. Mol Endocrinol 15(12):2057–2063

    Article  PubMed  CAS  Google Scholar 

  10. Fayard E, Auwerx J, Schoonjans K (2004) LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis. Trends Cell Biol 14(5):250–260

    Article  PubMed  CAS  Google Scholar 

  11. Mangelsdorf DJ et al (1995) The nuclear receptor superfamily: the second decade. Cell 83(6):835–839

    Article  PubMed  CAS  Google Scholar 

  12. Solomon IH et al (2005) Crystal structure of the human LRH-1 DBD-DNA complex reveals Ftz-F1 domain positioning is required for receptor activity. J Mol Biol 354(5):1091–1102

    Article  PubMed  CAS  Google Scholar 

  13. Krylova IN et al (2005) Structural analyses reveal phosphatidyl inositols as ligands for the NR5 orphan receptors SF-1 and LRH-1. Cell 120(3):343–355

    Article  PubMed  CAS  Google Scholar 

  14. Ortlund EA et al (2005) Modulation of human nuclear receptor LRH-1 activity by phospholipids and SHP. Nat Struct Mol Biol 12(4):357–363

    Article  PubMed  CAS  Google Scholar 

  15. Wang W et al (2005) The crystal structures of human steroidogenic factor-1 and liver receptor homologue-1. Proc Natl Acad Sci USA 102(21):7505–7510

    Article  PubMed  CAS  Google Scholar 

  16. Mendelson CR et al (2005) Transcriptional regulation of aromatase in placenta and ovary. J Steroid Biochem Mol Biol 95(1–5):25–33

    Article  PubMed  CAS  Google Scholar 

  17. Clyne CD et al (2002) Liver receptor homologue-1 (LRH-1) regulates expression of aromatase in preadipocytes. J Biol Chem 277(23):20591–20597

    Article  PubMed  CAS  Google Scholar 

  18. Bouchard MF, Taniguchi H, Viger RS (2005) Protein kinase A-dependent synergism between GATA factors and the nuclear receptor, liver receptor homolog-1, regulates human aromatase (CYP19) PII promoter activity in breast cancer cells. Endocrinology 146(11):4905–4916

    Article  PubMed  CAS  Google Scholar 

  19. Clyne CD et al (2004) Regulation of aromatase expression by the nuclear receptor LRH-1 in adipose tissue. Mol Cell Endocrinol 215(1–2):39–44

    PubMed  CAS  Google Scholar 

  20. Kovacic A et al (2004) Inhibition of aromatase transcription via promoter II by short heterodimer partner in human preadipocytes. Mol Endocrinol 18(1):252–259

    Article  PubMed  CAS  Google Scholar 

  21. Buluwela L et al (2005) Inhibiting estrogen responses in breast cancer cells using a fusion protein encoding estrogen receptor-alpha and the transcriptional repressor PLZF. Gene Ther 12(5):452–460

    Article  PubMed  CAS  Google Scholar 

  22. Whitby RJ et al (2006) Identification of small molecule agonists of the orphan nuclear receptors liver receptor homolog-1 and steroidogenic factor-1. J Med Chem 49(23):6652–6655

    Article  PubMed  CAS  Google Scholar 

  23. Lopez-Garcia J et al (2006) ZNF366 is an estrogen receptor corepressor that acts through CtBP and histone deacetylases. Nucleic Acids Res 34(21):6126–6136

    Article  PubMed  CAS  Google Scholar 

  24. Ross-Innes CS et al (2010) Cooperative interaction between retinoic acid receptor-alpha and estrogen receptor in breast cancer. Genes Dev 24(2):171–182

    Article  PubMed  CAS  Google Scholar 

  25. Carroll JS et al (2006) Genome-wide analysis of estrogen receptor binding sites. Nat Genet 38(11):1289–1297

    Article  PubMed  CAS  Google Scholar 

  26. Nitta M et al (1999) CPF: an orphan nuclear receptor that regulates liver-specific expression of the human cholesterol 7alpha-hydroxylase gene. Proc Natl Acad Sci USA 96(12):6660–6665

    Article  PubMed  CAS  Google Scholar 

  27. Lee YK, Moore DD (2002) Dual mechanisms for repression of the monomeric orphan receptor liver receptor homologous protein-1 by the orphan small heterodimer partner. J Biol Chem 277(4):2463–2467

    Article  PubMed  CAS  Google Scholar 

  28. Ueda H et al (1992) A novel DNA-binding motif abuts the zinc finger domain of insect nuclear hormone receptor FTZ-F1 and mouse embryonal long terminal repeat-binding protein. Mol Cell Biol 12(12):5667–5672

    PubMed  CAS  Google Scholar 

  29. Song X et al (2008) Liver receptor homolog 1 transcriptionally regulates human bile salt export pump expression. J Lipid Res 49(5):973–984

    Article  PubMed  CAS  Google Scholar 

  30. Frasor J et al (2003) Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology 144(10):4562–4574

    Article  PubMed  CAS  Google Scholar 

  31. Annicotte JS et al (2005) The nuclear receptor liver receptor homolog-1 is an estrogen receptor target gene. Oncogene 24(55):8167–8175

    PubMed  CAS  Google Scholar 

  32. Klinge CM (2001) Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 29(14):2905–2919

    Article  PubMed  CAS  Google Scholar 

  33. Miki Y et al (2006) Immunolocalization of liver receptor homologue-1 (LRH-1) in human breast carcinoma: possible regulator of in situ steroidogenesis. Cancer Lett 244(1):24–33

    Article  PubMed  CAS  Google Scholar 

  34. Eeckhoute J et al (2007) Positive cross-regulatory loop ties GATA-3 to estrogen receptor alpha expression in breast cancer. Cancer Res 67(13):6477–6483

    Article  PubMed  CAS  Google Scholar 

  35. Kouros-Mehr H et al (2008) GATA-3 and the regulation of the mammary luminal cell fate. Curr Opin Cell Biol 20(2):164–170

    Article  PubMed  CAS  Google Scholar 

  36. Carroll JS et al (2005) Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122(1):33–43

    Article  PubMed  CAS  Google Scholar 

  37. Laganiere J et al (2005) From the cover: location analysis of estrogen receptor alpha target promoters reveals that FOXA1 defines a domain of the estrogen response. Proc Natl Acad Sci USA 102(33):11651–11656

    Article  PubMed  CAS  Google Scholar 

  38. Michael MD et al (1995) Ad4BP/SF-1 regulates cyclic AMP-induced transcription from the proximal promoter (PII) of the human aromatase P450 (CYP19) gene in the ovary. J Biol Chem 270(22):13561–13566

    Article  PubMed  CAS  Google Scholar 

  39. Carlone DL, Richards JS (1997) Functional interactions, phosphorylation, and levels of 3′, 5′-cyclic adenosine monophosphate-regulatory element binding protein and steroidogenic factor-1 mediate hormone-regulated and constitutive expression of aromatase in gonadal cells. Mol Endocrinol 11(3):292–304

    Article  PubMed  CAS  Google Scholar 

  40. Young M, McPhaul MJ (1998) A steroidogenic factor-1-binding site and cyclic adenosine 3′, 5′-monophosphate response element-like elements are required for the activity of the rat aromatase promoter in rat Leydig tumor cell lines. Endocrinology 139(12):5082–5093

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank D. McDonnell, D. D. Moore, J. J. Tremblay, R. S. Viger, C. Clyne, E. R. Simpson, and S. Wang for their liberal gifts of plasmids, and A. G. M. Barrett, M. Fuchter, and A. Jaxa-Chamiec for helpful discussions. We also thank A. M. Khan for help with bioinformatics analysis of the ER gene sequences. This study was supported by grants from Cancer Research UK, the Royal College of Surgeons, the Wellcome Trust, and the Department of Health-funded Imperial College Cancer Medicine Centre (ECMC) grant. We are also grateful for the support received from the NIHR Biomedical Research Centre funding scheme.

Conflict of interest statement

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laki Buluwela or Simak Ali.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiruchelvam, P.T.R., Lai, CF., Hua, H. et al. The liver receptor homolog-1 regulates estrogen receptor expression in breast cancer cells. Breast Cancer Res Treat 127, 385–396 (2011). https://doi.org/10.1007/s10549-010-0994-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0994-9

Keywords

Navigation