Skip to main content


Log in

miR-17-5p promotes human breast cancer cell migration and invasion through suppression of HBP1

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript


MicroRNAs have been implicated in regulating diverse cellular pathways. Emerging evidence indicate that the miR-17-92 cluster may have a causal role in breast cancer tumorigenesis as a novel class of oncogenes, but the role of these miRNAs in breast cancer invasion and migration remains unexplored. The aims of this study were to verify the effect of miR-17-5p (an important member of the miR-17-92 cluster) on the invasive and migratory ability of breast cancer cells. The matching of miR-17-5p and HMG box-containing protein 1 (HBP1) was predicted by TargetScan and confirmed by DNA constructs and luciferase target assay. The expression levels of miR-17-5p and its candidate target-HBP1 in MCF7 and MDA-MB-231 breast cancer cells were measured by real-time PCR and western blotting. Effects of miR-17-5p in cell cycle progression, proliferation, invasion and migration were evaluated by flow cytometry assay, 3-(4,-dimethy -lthiazol-2-yl)-2,-diphenyl -tetrazoliumbromide assay, soft-agar colony formation assay, and transwell invasive and migratory assay, respectively. The results showed that miR-17-5p was highly expressed in high-invasive MDA-MB-231 breast cancer cells but not in low-invasive MCF-7 breast cancer cells. Over-expression of miR-17-5p in MCF-7 cells rendered them the invasive and migratory abilities by targeting HBP1/β-catenin pathway. On the other hand, down-regulation of endogenous miR-17-5p suppressed the migration and invasion of MDA-MB-231 cells in vitro. These findings suggest that miR-17-5p plays an important role in breast cancer cell invasion and migration by suppressing HBP1 and subsequent activation of Wnt/β-catenin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others



HMG box-containing protein 1




Phosphatase and tensin homolog


Bcl-2 interacting mediator of cell death


High glucose of Dulbecco’s modified Eagle’s medium


3-(4, -dimethy -lthiazol-2-yl)-2, -diphenyl -tetrazoliumbromide


Bovine serum albumin


MAP kinase kinase 4


Non-metastatic cells 1


Tissue inhibitor of matrix metalloproteinase-1


Non-metastatic cells 2


CD82 molecule (metastasis suppressor Kangai-1 homolog)


Stromal cell-derived factor 1


  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  2. Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596

    Article  PubMed  CAS  Google Scholar 

  3. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934

    Article  PubMed  CAS  Google Scholar 

  4. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843

    Article  PubMed  Google Scholar 

  5. Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL (2007) Transgenic over-expression of the microRNA miR-17–92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 310:442–453

    Article  PubMed  CAS  Google Scholar 

  6. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309:1577–1581

    Article  PubMed  CAS  Google Scholar 

  7. Fontana L, Pelosi E, Greco P, Racanicchi S, Testa U, Liuzzi F, Croce CM, Brunetti E, Grignani F, Peschle C (2007) MicroRNAs 17–5p-20a–106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 9:775–787

    Article  PubMed  CAS  Google Scholar 

  8. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci 103:2257–2261

    Article  PubMed  CAS  Google Scholar 

  9. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688

    Article  PubMed  CAS  Google Scholar 

  10. Tavazoie SF, Alarcón C, Oskarsson T, Padua D, Wang Q, Bos PD, Gerald WL, Massagué J (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451:147–152

    Article  PubMed  CAS  Google Scholar 

  11. Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szász AM, Wang ZC, Brock JE, Richardson AL, Weinberg RA (2009) A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137:1032–1046

    Article  PubMed  CAS  Google Scholar 

  12. Mendell JT (2008) miRiad roles for the miR-17–92 cluster in development and disease. Cell 133:217–222

    Article  PubMed  CAS  Google Scholar 

  13. Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, Iliopoulos D, Pilozzi E, Liu CG, Negrini M, Cavazzini L, Volinia S, Alder H, Ruco LP, Baldassarre G, Croce CM, Vecchione A (2008) E2F1-regulated microRNAs impair TGFβ-dependent cell cycle arrest and apoptosis in gastric cancer. Cancer Cell 13:272–286

    Article  PubMed  CAS  Google Scholar 

  14. Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F, Ferbeyre G, Chartrand P (2007) An E2F/miR-20a autoregulatory feedback loop. J Biol Chem 282:2135–2143

    Article  PubMed  CAS  Google Scholar 

  15. Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J, Henderson JM, Kutok JL, Rajewsky K (2008) Lymphoproliferative disease and autoimmunity in mice with increased miR-17–92 expression in lymphocytes. Nat Immunol 9:405–414

    Article  PubMed  CAS  Google Scholar 

  16. Johnson DG (2007) The paradox of E2F1: oncogene and tumor suppressor gene. Mol Carcinog 27:151–157

    Article  Google Scholar 

  17. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  PubMed  CAS  Google Scholar 

  18. Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, Liang S, Naylor TL, Barchetti A, Ward MR, Yao G, Medina A, O′brien-Jenkins A, Katsaros D, Hatzigeorgiou A, Gimotty PA, Weber BL, Coukos G (2006) microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci 103:9136–9141

    Article  PubMed  CAS  Google Scholar 

  19. Gupta GP, Massagu J (2006) Cancer metastasis: building a framework. Cell 127:679–695

    Article  PubMed  CAS  Google Scholar 

  20. Weigelt B, Peterse JL, van’t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602

    Article  PubMed  CAS  Google Scholar 

  21. Sampson EM, Haque ZK, Ku MC, Tevosian SG, Albanese C, Pestell RG, Paulson KE, Yee AS (2001) Negative regulation of the Wnt/β-catenin pathway by the transcriptional repressor HBP1. EMBO J 20:4500–4511

    Article  PubMed  CAS  Google Scholar 

  22. Paulson KE, Rieger-Christ K, McDevitt MA, Kuperwasser C, Kim J, Unanue VE, Zhang X, Hu M, Ruthazer R, Berasi SP, Huang CY, Giri D, Kaufman S, Dugan JM, Blum J, Netto G, Wazer DE, Summerhayes IC, Yee AS (2007) Alterations of the HBP1 transcriptional repressor are associated with invasive breast cancer. Cancer Res 67:6136–6145

    Article  PubMed  CAS  Google Scholar 

  23. Shih HH, Xiu M, Yee AS (2001) HMG box transcriptional repressor HBP1 maintains a proliferation barrier in differentiated liver tissue. Mol Cell Biol 21:5723–5732

    Article  PubMed  CAS  Google Scholar 

  24. Yee AS, Paulson EK, McDevitt MA, Rieger-Christ K, Summerhayes I, Berasi SP, Kim J, Huang CY, Zhang X (2004) The HBP1 transcriptional repressor and the p38 MAP kinase: unlikely partners in G1 regulation and tumor suppression. Gene 336:1–13

    Article  PubMed  CAS  Google Scholar 

  25. Qin X, Zhang H, Zhou X, Wang C, Zhang H, Zhang X, Ye L (2007) Proliferation and migration mediated by Dkk-1/Wnt/β-catenin cascade in a model of hepatocellular carcinoma cells. Transl Res 150:281–294

    Article  PubMed  CAS  Google Scholar 

  26. Wang Z, Ma Q (2007) Beta-catenin is a promising key factor in the SDF-1/CXCR4 axis on metastasis of pancreatic cancer. Med Hypotheses 69:816–820

    Article  PubMed  CAS  Google Scholar 

  27. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927–939

    Article  PubMed  CAS  Google Scholar 

  28. Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426

    Article  PubMed  CAS  Google Scholar 

  29. Howe LR, Brown AM (2004) Wnt signaling and breast cancer. Cancer Biol Ther 3:36–41

    Article  PubMed  CAS  Google Scholar 

  30. Yu Z, Wang C, Wang M, Li Z, Casimiro MC, Liu M, Wu K, Whittle J, Ju X, Hyslop T, McCue P, Pestell RG (2008) A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol 182:509–517

    Article  PubMed  CAS  Google Scholar 

  31. Ghosh-Choudhury T, Mandal CC, Woodruff K, St Clair P, Fernandes G, Choudhury GG, Ghosh-Choudhury N (2009) Fish oil targets PTEN to regulate NFkappaB for downregulation of anti-apoptotic genes in breast tumor growth. Breast Cancer Res Treat 118:213–228

    Article  PubMed  CAS  Google Scholar 

  32. Davies MA, Kim SJ, Parikh NU, Dong Z, Bucana CD, Gallick GE (2002) Adenoviral mediated expression of MMAC/PTEN inhibits proliferation and metastasis of human prostate cancer cells. Clin Cancer Res 8:1904–1914

    PubMed  CAS  Google Scholar 

  33. Bandyopadhyay S, Pai SK, Hirota S, Hosobe S, Tsukada T, Miura K, Takano Y, Saito K, Commes T, Piquemal D, Watabe M, Gross S, Wang Y, Huggenvik J, Watabe K (2004) PTEN up-regulates the tumor metastasis suppressor gene Drg-1 in prostate and breast cancer. Cancer Res 64:655–7660

    Google Scholar 

  34. Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18:350–359

    Article  PubMed  CAS  Google Scholar 

  35. Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM (1998) Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 280:1614–1617

    Article  PubMed  CAS  Google Scholar 

  36. Teng DH, Perry WL 3rd, Hogan JK, Baumgard M, Bell R, Berry S, Davis T, Frank D, Frye C, Hattier T, Hu R, Jammulapati S, Janecki T, Leavitt A, Mitchell JT, Pero R, Sexton D, Schroeder M, Pi-Hsia S, Swedlund B, Kyriakis JM, Avruch J, Bartel P, Wong AK, Oliphant A, Thomas A, Skolnick MK, Tavtigian SV (1997) Human mitogen-activated protein kinase kinase 4 as a candidate tumor suppressor. Cancer Res 57:4177–4182

    PubMed  CAS  Google Scholar 

  37. Zhao H, Jhanwar-Uniyal M, Datta PK, Yemul S, Ho L, Khitrov G, Kupershmidt I, Pasinetti GM, Ray T, Athwal RS, Achary MP (2004) Expression profile of genes associated with antimetastatic gene: nm23-mediated metastasis inhibition in breast carcinoma cells. Int J Cancer 109:65–70

    Article  PubMed  CAS  Google Scholar 

  38. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839

    Article  PubMed  CAS  Google Scholar 

Download references


This work was supported by grants from the “863 Projects” of Ministry of Science and Technology of People’s Republic of China (No. 2006AA02A109, 2006AA02A115), National Natural Science Foundation of China (No. 30830052, 30911130363, U0970181), Beijing Ministry of Science and Technology (No. D07050701350701) and major national science and technology project (No. 2008ZX09101-044, 2009ZX09503-025).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Robert Chunhua Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

miR-17-5p mimic promoted MCF7 cells to form more colonies in soft agar (n=4) in general imaging (TIFF 17499 kb)


miR-17-5p inhibitor suppressed the colony growth ability of 231 cells in soft agar (n=4) in general imaging (TIFF 15055 kb)


Inhibition of endogenous miR-17-5p almost failed to suppresses activities of MCF7 cells in vitro (a) MTT assay and (b) colony formation assay showed the slight inhibition of MCF7 cell proliferation and colony formation by miR-17-5p knockdown. (c) and (d) Transwell invasion and migration assays on MCF7 cells indicated down-regulations of miR-17-5p failed to decrease cell invasive and migratory ability. Data represent the mean ±SD of at least 3 independent experiments *P<0.05, **P<0.01, ***P<0.001 (TIFF 21222 kb)


HBP1, but not PTEN, is the direct target of miR-17-5p in breast cancer cells (a) Western blot and real-time PCR eliminated PTEN as a direct target of miR-17-5p in breast cancer cells. (b) The effect of miR-17-5p inhibitor on the luciferase activity of MCF7 cells (TIFF 1569 kb)

Si-HBP1 failed to affect colony formation in a semisolid medium (TIFF 21085 kb)

Si-HBP1 failed to reverse the colony formation of miR-17-5pI-transfected 231 cells in general imaging (TIFF 28845 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Bian, C., Liao, L. et al. miR-17-5p promotes human breast cancer cell migration and invasion through suppression of HBP1. Breast Cancer Res Treat 126, 565–575 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: