Skip to main content

Advertisement

Log in

MTRR A66G polymorphism and breast cancer risk: a meta-analysis

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Methionine synthase reductase (MTRR) is one of the important enzymes involved in the folate metabolic pathway and its functional genetic polymorphisms may be associated with breast cancer risk. However, this relationship remains inconclusive. For better understanding the effect of MTRR A66G polymorphism on breast cancer risk, a meta-analysis was performed. By searching PubMed and EMBASE, a total of six case–control studies, containing 6,084 cases and 6,756 controls, were included. The strength of association between MTRR A66G polymorphism and breast cancer risk was assessed by odds ratio (OR) with the corresponding 95% confidence interval (95% CI). The results strongly suggested that there was no significant association between MTRR A66G polymorphism and breast cancer susceptibility in overall comparisons in all genetic models (additive model: OR 1.00, 95% CI 0.89–1.11, P = 0.943; dominant model: OR 1.00, 95% CI 0.91–1.10, P = 0.989; recessive model: OR 1.00, 95% CI 0.91–1.09, P = 0.926). Similarly, in subgroup analyses for ethnicity (Caucasian, Asian and mixed population) and folate intake status (high and low folate intake), the results were negative. Sensitivity analysis demonstrated that omitting any study did not perturb the results. In conclusion, this meta-analysis strongly suggests that MTRR A66G polymorphism is not associated with breast cancer risk, especially in Caucasians and Asians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Maruti SS, Ulrich CM, White E (2009) Folate and one-carbon metabolism nutrients from supplements and diet in relation to breast cancer risk. Am J Clin Nutr 89:624–633. doi:10.3945/ajcn.2008.26568

    Article  CAS  PubMed  Google Scholar 

  2. Larsson SC, Bergkvist L, Wolk A (2008) Folate intake and risk of breast cancer by estrogen and progesterone receptor status in a Swedish cohort. Cancer Epidemiol Biomarkers Prev 17:3444–3449. doi:10.1158/1055-9965.EPI-08-0692

    Article  CAS  PubMed  Google Scholar 

  3. Ericson U, Sonestedt E, Gullberg B, Olsson H, Wirfält E (2007) High folate intake is associated with lower breast cancer incidence in postmenopausal women in the Malmö Diet and Cancer cohort. Am J Clin Nutr 86:434–443

    CAS  PubMed  Google Scholar 

  4. Stern LL, Mason JB, Selhub J, Choi SW (2000) Genomic DNA hypomethylation, a characteristic of most cancers, is present in peripheral leukocytes of individuals who are homozygous for the C677T polymorphism in the methylenetetrahydrofolate reductase gene. Cancer Epidemiol Biomarkers Prev 9:849–853

    CAS  PubMed  Google Scholar 

  5. Ma E, Iwasaki M, Junko I, Hamada GS, Nishimoto IN, Carvalho SM, Motola J Jr, Laginha FM, Tsugane S (2009) Dietary intake of folate, vitamin B6, and vitamin B12, genetic polymorphism of related enzymes, and risk of breast cancer: a case–control study in Brazilian women. BMC Cancer 9:122. doi:10.1186/1471-2407-9-122

    Article  PubMed  Google Scholar 

  6. Platek ME, Shields PG, Marian C, McCann SE, Bonner MR, Nie J, Ambrosone CB, Millen AE, Ochs-Balcom HM, Quick SK, Trevisan M, Russell M, Nochajski TH, Edge SB, Freudenheim JL (2009) Alcohol consumption and genetic variation in methylenetetrahydrofolate reductase and 5-methyltetrahydrofolatehomocysteine methyltransferase in relation to breast cancer risk. Cancer Epidemiol Biomarkers Prev 18:2453–2459. doi:10.1158/1055-9965.EPI-09-0159

    Article  CAS  PubMed  Google Scholar 

  7. Sangrajrang S, Sato Y, Sakamoto H, Ohnami S, Khuhaprema T, Yoshida T (2010) Genetic polymorphisms in folate and alcohol metabolism and breast cancer risk: a case–control study in Thai women. Breast Cancer Res Treat. doi:10.1007/s10549-010-0804-4

  8. Zhang J, Qiu LX, Wang ZH, Wu XH, Liu XJ, Wang BY, Hu XC (2010) MTHFR C677T polymorphism associated with breast cancer susceptibility: a meta-analysis involving 15,260 cases and 20,411 controls. Breast Cancer Res Treat. doi 10.1007/s10549-010-0783-5

  9. Qi X, Ma X, Yang X, Fan L, Zhang Y, Zhang F, Chen L, Zhou Y, Jiang J (2010) Methylenetetrahydrofolate reductase polymorphisms and breast cancer risk: a meta-analysis from 41 studies with 16,480 cases and 22,388 controls. Breast Cancer Res Treat. doi:10.1007/s10549-010-0773-7

  10. Lu M, Wang F, Qiu J (2010) Methionine synthase A2756G polymorphism and breast cancer risk: a meta-analysis involving 18,953 subjects. Breast Cancer Res Treat. doi:10.1007/s10549-010-0755-9

  11. Olteanu H, Munson T, Banerjee R (2002) Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase. Biochem 41:13378–13385. doi:10.1021/bi020536s

    Article  CAS  Google Scholar 

  12. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748

    CAS  PubMed  Google Scholar 

  13. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  CAS  PubMed  Google Scholar 

  14. Cochran WG (1954) The combination of estimates from different experiments. Biometrics 10:101–129

    Article  Google Scholar 

  15. Tobias A (1999) Assessing the influence of a single study in the meta-analysis estimate. Stata Tecnol Bull 8:15–17

    Google Scholar 

  16. Egger M, Davey SG, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    CAS  PubMed  Google Scholar 

  17. Beetstra S, Suthers G, Dhillon V, Salisbury C, Turner J, Altree M, McKinnon R, Fenech M (2008) Methionine-dependence phenotype in the de novo pathway in BRCA1 and BRCA2 mutation carriers with and without breast cancer. Cancer Epidemiol Biomarkers Prev 17:2565–2571. doi:10.1158/1055-9965.EPI-08-0140

    Article  CAS  PubMed  Google Scholar 

  18. Shrubsole MJ, Gao YT, Cai Q, Shu XO, Dai Q, Jin F, Zheng W (2006) MTR and MTRR polymorphisms, dietary intake, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 15:586–588. doi:10.1158/1055-9965.EPI-05-0576

    Article  CAS  PubMed  Google Scholar 

  19. Lissowska J, Gaudet MM, Brinton LA, Chanock SJ, Peplonska B, Welch R, Zatonski W, Szeszenia-Dabrowska N, Park S, Sherman M, Garcia-Closas M (2007) Genetic polymorphisms in the one-carbon metabolism pathway and breast cancer risk: a population-based case–control study and meta-analyses. Int J Cancer 120:2696–2703. doi:10.1002/ijc.22604

    Article  CAS  PubMed  Google Scholar 

  20. Xu X, Gammon MD, Zhang H, Wetmur JG, Rao M, Teitelbaum SL, Britton JA, Neugut AI, Santella RM, Chen J (2007) Polymorphisms of one-carbon-metabolizing genes and risk of breast cancer in a population-based study. Carcinogenesis 28:1504–1509. doi:10.1093/carcin/bgm061

    Article  CAS  PubMed  Google Scholar 

  21. Kotsopoulos J, Zhang WW, Zhang S, McCready D, Trudeau M, Zhang P, Sun P, Narod SA (2008) Polymorphisms in folate metabolizing enzymes and transport proteins and the risk of breast cancer. Breast Cancer Res Treat 112:585–593. doi:10.1007/s10549-008-9895-6

    Article  CAS  PubMed  Google Scholar 

  22. Suzuki T, Matsuo K, Hirose K, Hiraki A, Kawase T, Watanabe M, Yamashita T, Iwata H, Tajima K (2008) One-carbon metabolism-related gene polymorphisms and risk of breast cancer. Carcinogenesis 29:356–362. doi:10.1093/carcin/bgm295

    Article  CAS  PubMed  Google Scholar 

  23. Feix A, Winkelmayer WC, Eberle C, Sunder-Plassmann G, Födinger M (2004) Methionine synthase reductase MTRR 66A > G has no effect on total homocysteine, folate, and Vitamin B12 concentrations in renal transplant patients. Atherosclerosis 174:43–48. doi:10.1016/j.atherosclerosis.2003.12.036

    Article  CAS  PubMed  Google Scholar 

  24. Vaughn JD, Bailey LB, Shelnutt KP, Dunwoody KM, Maneval DR, Davis SR, Quinlivan EP, Gregory JF 3rd, Theriaque DW, Kauwell GP (2004) Methionine synthase reductase 66A- > G polymorphism is associated with increased plasma homocysteine concentration when combined with the homozygous methylenetetrahydrofolate reductase 677C- > T variant. J Nutr 134:2985–2990

    CAS  PubMed  Google Scholar 

  25. Jones PA, Laird PW (1999) Cancer epigenetics comes of age. Nat Genet 21:163–167

    Article  CAS  PubMed  Google Scholar 

  26. Kwak SY, Kim UK, Cho HJ, Lee HK, Kim HJ, Kim NK, Hwang SG (2008) Methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) gene polymorphisms as risk factors for hepatocellular carcinoma in a Korean population. Anticancer Res 28:2807–2811

    CAS  PubMed  Google Scholar 

  27. Stolzenberg-Solomon RZ, Qiao YL, Abnet CC, Ratnasinghe DL, Dawsey SM, Dong ZW, Taylor PR, Mark SD (2003) Esophageal and gastric cardia cancer risk and folate- and vitamin B(12)-related polymorphisms in Linxian, China. Cancer Epidemiol Biomarkers Prev 12:1222–1226

    CAS  PubMed  Google Scholar 

  28. Matsuo K, Hamajima N, Hirai T, Kato T, Inoue M, Takezaki T, Tajima K (2002) Methionine synthase reductase gene A66G polymorphism is associated with risk of colorectal cancer. Asian Pac J Cancer Prev 3:353–359

    PubMed  Google Scholar 

  29. Stolzenberg-Solomon RZ, Chang SC, Leitzmann MF, Johnson KA, Johnson C, Buys SS, Hoover RN, Ziegler RG (2006) Folate intake, alcohol use, and postmenopausal breast cancer risk in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Am J Clin Nutr 83:895–904

    CAS  PubMed  Google Scholar 

  30. Berlin JA, Santanna J, Schmid CH, Szczech LA, Feldman HI, Anti-Lymphocyte Antibody Induction Therapy Study Group (2002) Individual patient- versus group-level data meta-regressions for the investigation of treatment effect modifiers: ecological bias rears its ugly head. Stat Med 21:371–387

    Article  PubMed  Google Scholar 

  31. Lambert PC, Sutton AJ, Abrams KR, Jones DR (2002) A comparison of summary patient-level covariates in meta-regression with individual patient data meta-analysis. J Clin Epidemiol 55:86–94

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Jie Wang.

Additional information

J. Hu and G.-W. Zhou equally contributed to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Zhou, GW., Wang, N. et al. MTRR A66G polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 124, 779–784 (2010). https://doi.org/10.1007/s10549-010-0892-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0892-1

Keywords

Navigation