Skip to main content
Log in

Role of ferritin alterations in human breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Breast cancer is the most common malignancy in women. Successful treatment of breast cancer relies on a better understanding of the molecular mechanisms involved in breast cancer initiation and progression. Recent studies have suggested a crucial role of perturbations in ferritin levels and tightly associated with this, the deregulation of intracellular iron homeostasis; however, the underlying molecular mechanisms for the cancer-linked ferritin alterations remain largely unknown and often with conflicting conclusions. Therefore, this study was undertaken to define the role of ferritin in breast cancer. We determined that human breast cancer cells with an epithelial phenotype, such as MCF-7, MDA-MB-361, T-47D, HCC70 and cells, expressed low levels of ferritin light chain, ferritin heavy chain, transferrin, transferring receptor, and iron-regulatory proteins 1 and 2. In contrast, expression of these proteins was substantially elevated in breast cancer cells with an aggressive mesenchymal phenotype, such as Hs-578T, BT-549, and especially MDA-MB-231 cells. The up-regulation of ferritin light chain and ferritin heavy chain in MDA-MB-231 cells was accompanied by alterations in the subcellular distribution of these proteins as characterized by an increased level of nuclear ferritin and a lower level of the cellular labile iron pool as compared to MCF-7 cells. We established that ferritin heavy chain is a target of miRNA miR-200b, suggesting that its up-regulation in MDA-MB-231 cells may be triggered by the low expression of miR-200b. Ectopic up-regulation of miR-200b by transfection of MDA-MB-231 cells with miR-200b substantially decreased the level of ferritin heavy chain. More importantly, miR-200b-induced down-regulation of ferritin was associated with an increased sensitivity of the MDA-MB-231 cells to the chemotherapeutic agent doxorubicin. These results suggest that perturbations in ferritin levels are associated with the progression of breast cancer toward a more advanced malignant phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249

    Article  PubMed  Google Scholar 

  2. Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN (2007) Overview of resistance to systematic therapy in patients with breast cancer. Adv Exp Med Biol 608:1–22

    Article  CAS  PubMed  Google Scholar 

  3. Longley DB, Johnston PG (2005) Molecular mechanism of drug resistance. J Pathol 205:275–292

    Article  CAS  PubMed  Google Scholar 

  4. O’Driscoll L, Clynes M (2006) Biomarkers and multiple drug resistance in breast cancer. Curr Cancer Drug Targets 6:365–384

    Article  PubMed  Google Scholar 

  5. Coley HM (2008) Mechanism and strategies to overcome chemotherapy resistance in metastatic breast cancer. Cancer Treat Rev 34:378–390

    Article  CAS  PubMed  Google Scholar 

  6. Raguz S, Yagüe E (2008) Resistance to chemotherapy: new treatments and novel insights into an old problem. Br J Cancer 99:387–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lieghr JG, Jones JS (2001) Role of iron in estrogen-induced cancer. Curr Med Chem 8:839–849

    Article  Google Scholar 

  8. Kabat GC, Rohan TE (2007) Does excess iron play a role in breast carcinogenesis? An unresolved hypothesis. Cancer Causes Control 18:1047–1053

    Article  PubMed  Google Scholar 

  9. Huang X (2008) Does iron have a role in breast cancer? Lancet Oncol 9:803–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arosio P, Ingrassia R, Cavadini P (2009) Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta 1790:589–599

    Article  CAS  PubMed  Google Scholar 

  11. Torti FM, Torti SV (2002) Regulation of ferritin genes and protein. Blood 99:3505–3516

    Article  CAS  PubMed  Google Scholar 

  12. Weinstein RE, Bond BH, Silberberg BK (1982) Tissues ferritin concentration in carcinoma of the breast. Cancer 50:2406–2409

    Article  CAS  PubMed  Google Scholar 

  13. Günner G, Kirkali G, Yenisey C, Töre IR (1992) Cytosol and serum ferritin in breast carcinoma. Cancer Lett 67:103–112

    Article  Google Scholar 

  14. Higgy NA, Salicioni AM, Russo IH, Zhang PL, Russo J (1997) Differential expression of human ferritin H chain gene in immortal human breast epithelial MCF-10F cells. Mol Carcinog 20:332–339

    Article  CAS  PubMed  Google Scholar 

  15. Yang DC, Wang F, Elliot RL, Head JF (2001) Expression of transferring receptor and ferritin H-chain mRNA are associated with clinical and histopathological prognostic indicators in breast cancer. Anticancer Res 21:541–549

    CAS  PubMed  Google Scholar 

  16. Mackay A, Jones C, Dexter T, Silva RLA, Bulmer K, Jones A, Simpson P, Harris RA, Jat PS, Neville AM, Reis LFL, Lakhani SR, O’Hare MJ (2003) cDNA microarray analysis of genes associated with ERB2 (HER2/neu) overexpression in human mammary luminal epithelial cells. Oncogene 22:2680–2688

    Article  CAS  PubMed  Google Scholar 

  17. Li YQ, Yan H, Bai B (2008) Change in iron transporter expression in human term placenta with different maternal iron status. Eur J Obstet Gynecol Reprod Biol 140:48–54

    Article  CAS  PubMed  Google Scholar 

  18. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  19. Zhang KH, Tian HY, Gao X, Lei WW, Hu Y, Wang DM, Pan XC, Yu ML, Xu GJ, Zhao FK, Song JG (2009) Ferritin heavy chain-mediated iron homeostasis and subsequent increased reactive oxygen species production are essential for epithelial-mesenchymal transition. Cancer Res 69:5340–5348

    Article  CAS  PubMed  Google Scholar 

  20. Kakhlon O, Cabantchik ZI (2002) The labile iron pool: characterization, measurement, and participation in cellular processes (1). Free Radic Biol Med 33:1037–1046

    Article  CAS  PubMed  Google Scholar 

  21. Tryndyak VP, Beland FA, Pogribny IP (2010) E-cadherin transcriptional down-regulation by epigenetic and microRNA-200 family alterations is related to mesenchymal and drug-resistant phenotypes in human breast cancer cells. Int J Cancer (in press)

  22. Trudeau M, Charbonneau F, Gelmon K, Laing K, Latreille J, Mackey J, McLeod D, Pritchard K, Provencher L, Verma S (2005) Selection of adjuvant chemotherapy for treatment of node-positive breast cancer. Lancet Oncol 6:886–898

    Article  CAS  PubMed  Google Scholar 

  23. Kwok JC, Richardson DR (2002) The iron metabolism of neoplastic cells: alterations that facilitate proliferation? Crit Rev Oncol Hematol 42:65–78

    Article  PubMed  Google Scholar 

  24. Toyokuni S (2009) Role of iron in carcinogenesis: cancer as a ferrotoxic disease. Cancer Sci 100:9–16

    Article  CAS  PubMed  Google Scholar 

  25. Weinstein RE, Bond BH, Silberberg BK, Vaughn CB, Subbaiah P, Pieper DR (1989) Tissue ferritin concentration and prognosis in carcinoma of the breast. Breast Cancer Res Treat 14:349–353

    Article  CAS  PubMed  Google Scholar 

  26. Modjtahedi N, Frebourg T, Fossar N, Lavialle C, Cremisi C, Brison O (1992) Increased expression of cytokeratin and ferritin-H genes in tumorigenic of the SW 613-S human colon carcinoma cell line. Exp Cell Res 201:74–82

    Article  CAS  PubMed  Google Scholar 

  27. Wu CG, Groenink M, Bosma A, Reitsma PH, van Deventer SJH, Chamuleau RAFM (1997) Rat ferritin-H: cDNA cloning, differential expression and localization during hepatocarcinogenesis. Carcinogenesis 18:47–52

    Article  PubMed  Google Scholar 

  28. Wu KJ, Polack A, Dalla-Favera R (1999) Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC. Science 283:676–679

    Article  CAS  PubMed  Google Scholar 

  29. Calzolari A, Oliviero I, Deaglio S, Mariani G, Biffoni M, Sposi NM, Malavasi F, Peschle C, Testa U (2007) Transferrin receptor 2 is frequently expressed in human cancer cell lines. Blood Cells Mol Dis 39:82–91

    Article  CAS  PubMed  Google Scholar 

  30. Richardson DR, Kalinowski DS, Lau S, Jansson PJ, Lovejoy DB (2009) Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents. Biochim Biophys Acta 1790:702–717

    Article  CAS  PubMed  Google Scholar 

  31. Baldi A, Battista T, De Luca A, Santini D, Rossiello L, Baldi F, Natali PG, Lombardi D, Picardo M, Felsani A, Paggi MG (2003) Identification of genes down-regulated during melanoma progression: a cDNA array study. Exp Dermatol 12:213–218

    Article  CAS  PubMed  Google Scholar 

  32. Habashy HO, Powe DG, Staka CM, Rakha EA, Ball G, Green AR, Aleskandarany M, Paish EC, Douglas Macmillan R, Nicholson RI, Ellis IO, Gee JM (2010) Transferrin receptor (CD71) is a marker of poor prognosis in breast cancer and can predict response to tamoxifen. Breast Cancer Res Treat 119:283–293

    Article  CAS  PubMed  Google Scholar 

  33. Lin F, Girotti AW (1997) Elevated ferritin production, iron containment, and oxidant resistance in hemin-treated leukemia cells. Arch Biochem Biophys 346:131–141

    Article  CAS  PubMed  Google Scholar 

  34. Epsztejn S, Glickstein H, Picard V, Slotki IN, Breuer W, Beaumont C, Cabantchik ZI (1999) H-ferritin subunit overexpression in erythroid cells reduces the oxidative stress response and induces multidrug resistance properties. Blood 94:3593–3603

    CAS  PubMed  Google Scholar 

  35. Berberat PO, Katori M, Kaczmarek E, Anselmo D, Lassman C, Ke B, Shen X, Busuttil RW, Yamashita K, Csizmadia E, Tyagi S, Otterbein LE, Brouard S, Tobiasch E, Bach FH, Kupiec-Weglinski JW, Soares MP (2003) Heavy chain ferritin acts as an antiapoptotic gene that protects livers from ischemia reperfusion injury. FASEB J 17:1724–1726

    CAS  PubMed  Google Scholar 

  36. Cozzi A, Corsi B, Levi S, Santambrogio P, Albertini A, Arosio A (2000) Overexpression of wild type and mutated human ferritin H-chain in HeLa cells. J Biol Chem 275:25122–25129

    Article  CAS  PubMed  Google Scholar 

  37. Baldi A, Lombardi D, Russo P, Palescandolo A, De Luca A, Santini D, Baldi F, Rossielo L, Dell’Anna ML, Mastrofrancesco A, Maresca V, Flori E, Natali PG, Picardo M, Paggi MG (2005) Ferritin contributes to melanoma progression by modulating cell growth and sensitivity to oxidative stress. Clin Cancer Res 11:3175–3183

    Article  CAS  PubMed  Google Scholar 

  38. Kiessling MK, Klemke CD, Kaminski MM, Galani IE, Krammer PH, Gülow K (2009) Inhibition of constrictively activated nuclear factor-kappaB induces reactive oxygen species- and iron-dependent cell death in cutaneous T-cell lymphoma. Cancer Res 69:2365–2374

    Article  CAS  PubMed  Google Scholar 

  39. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9:582–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601

    Article  CAS  PubMed  Google Scholar 

  41. Hurteau GJ, Carlson IA, Roos E, Brock GJ (2009) Stable expression of miR-200c alone is sufficient to regulate TCF (ZEB1) and restore E-cadherin expression. Cell Cycle 8:2064–2069

    Article  CAS  PubMed  Google Scholar 

  42. Yang DC, Elliott RL, Head JF (2002) Gene targets of antisense therapies in breast cancer. Expert Opin Ther Targets 6:375–385

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor P. Pogribny.

Additional information

The views expressed in this paper do not necessarily represent those of the U.S. Food and Drug Administration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shpyleva, S.I., Tryndyak, V.P., Kovalchuk, O. et al. Role of ferritin alterations in human breast cancer cells. Breast Cancer Res Treat 126, 63–71 (2011). https://doi.org/10.1007/s10549-010-0849-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0849-4

Keywords

Navigation