Skip to main content

Advertisement

Log in

Targeting Id1 and Id3 by a specific peptide aptamer induces E-box promoter activity, cell cycle arrest, and apoptosis in breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Inhibitors of differentiation or DNA binding (Id) proteins have been shown to be involved in tumor growth, invasiveness, metastasis, and angiogenesis. Overexpression of Id proteins, especially Id1, correlates with unfavorable clinical prognosis. Thus, they are attractive molecular targets for anticancer therapy. Overexpression of Id proteins mediates breast cancer metastasis to lung. Targeting Id1 and Id3 expression in breast cancer cells reduces breast cancer metastasis in animal models. Different breast tumors failed to grow and/or metastasize in Id1 +/− Id3 −/− mice. Id1 and Id3 preferentially dimerize with the key regulatory E-proteins which inhibit the expression of different tumor suppressor genes. Nevertheless, the inhibition of tumorigenic activities of Id1 and Id3 at protein level has never been studied. Here, we isolated a novel peptide aptamer, Id1/3-PA7, specifically interacting with Id1 and Id3 from randomized combinatorial expression library using yeast and mammalian two-hybrid systems. Intracellular delivered Id1/3-PA7 co-localized to Id1 and Id3 and interfered with their functions. It repressed E47 protein sequestration by Id1 and Id3, activated the E-box promoter and increased the expression level of cyclin-dependent kinase inhibitors (CDKN1A and CDKN1B) in a dose-dependent fashion, paralleled by the cleavage of poly ADP ribose polymerase (PARP). These effects were counteracted by ectopically overexpressed Id1 and Id3. Peptide aptamer Id1/3-PA7 induced cell cycle arrest and apoptosis in breast cancer cells MCF7 and MDA-MB-231. In conclusion, Id1/3-PA7 could represent a nontoxic exogenous agent that can significantly provoke antiproliferative and apoptotic effects in breast cancer cells, which are associated with deregulated expression of Id1 and Id3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H (1990) The protein Id: a negative regulator of helix–loop–helix DNA binding proteins. Cell 61:49–59

    Article  CAS  PubMed  Google Scholar 

  2. Iavarone A, Garg P, Lasorella A, Hsu J, Israel MA (1994) Helix–loop–helix protein Id-2 enhances cell proliferation and binds to the retinoblastoma protein. Genes Dev 8:1270–1284

    Article  CAS  PubMed  Google Scholar 

  3. Yates PR, Atherton GT, Deed RW, Norton JD, Sharrocks AD (1999) Id helix–loop–helix proteins inhibit nucleoprotein complex formation by the TCF ETS-domain transcription factors. EMBO J 18:968–976

    Article  CAS  PubMed  Google Scholar 

  4. Roberts CE, Deed RW, Inoue T, Norton JD, Sharrocks AD (2001) Id helix–loop–helix proteins antagonize pax transcription factor activity by inhibiting DNA binding. Mol Cell Biol 21:524–533

    Article  CAS  PubMed  Google Scholar 

  5. Langlands K, Yin X, Anand G, Prochownik EV (1997) Differential interactions of Id proteins with basic-helix–loop–helix transcription factors. J Biol Chem 272:19785–19793

    Article  CAS  PubMed  Google Scholar 

  6. Ruzinova MB, Benezra R (2003) Id proteins in development, cell cycle and cancer. Trends Cell Biol 13:410–418

    Article  CAS  PubMed  Google Scholar 

  7. Yokota Y, Mori S (2002) Role of Id family proteins in growth control. J Cell Physiol 190:21–28

    Article  CAS  PubMed  Google Scholar 

  8. Barone MV, Pepperkok R, Peverali FA, Philipson L (1994) Id proteins control growth induction in mammalian cells. Proc Natl Acad Sci USA 91:4985–4988

    Article  CAS  PubMed  Google Scholar 

  9. Peverali FA, Ramqvist T, Saffrich R, Pepperkok R, Barone MV, Philipson L (1994) Regulation of G1 progression by E2A and Id helix–loop–helix proteins. EMBO J 13:4291–4301

    CAS  PubMed  Google Scholar 

  10. Prabhu S, Ignatova A, Park ST, Sun XH (1997) Regulation of the expression of cyclin-dependent kinase inhibitor p21 by E2A and Id proteins. Mol Cell Biol 17:5888–5896

    CAS  PubMed  Google Scholar 

  11. Perk J, Iavarone A, Benezra R (2005) Id family of helix–loop–helix proteins in cancer. Nat Rev Cancer 5:603–614

    Article  CAS  PubMed  Google Scholar 

  12. Alani RM, Young AZ, Shifflett CB (2001) Id1 regulation of cellular senescence through transcriptional repression of p16/Ink4a. Proc Natl Acad Sci USA 98:7812–7816

    Article  CAS  PubMed  Google Scholar 

  13. Schindl M, Oberhuber G, Obermair A, Schoppmann SF, Karner B, Birner P (2001) Overexpression of Id-1 protein is a marker for unfavorable prognosis in early-stage cervical cancer. Cancer Res 61:5703–5706

    CAS  PubMed  Google Scholar 

  14. Schindl M, Schoppmann SF, Strobel T, Leisser C, Birner P, Horvat R (2003) Level of Id-1 protein expression correlates with poor differentiation, enhanced malignant potential, and more aggressive clinical behavior of epithelial ovarian tumors. Clin Cancer Res 9:779–785

    CAS  PubMed  Google Scholar 

  15. Straume O, Akslen LA (2005) Strong expression of ID1 protein is associated with decreased survival, increased expression of ephrin-A1/EPHA2, and reduced thrombospondin-1 in malignant melanoma. Br J Cancer 93:933–938

    Article  CAS  PubMed  Google Scholar 

  16. Schoppmann SF, Schindl M, Bayer G et al (2003) Overexpression of Id-1 is associated with poor clinical outcome in node negative breast cancer. Int J Cancer 104:677–682

    Article  CAS  PubMed  Google Scholar 

  17. Fong S, Itahana Y, Sumida T et al (2003) Id-1 as a molecular target in therapy for breast cancer cell invasion and metastasis. Proc Natl Acad Sci USA 100:13543–13548

    Article  CAS  PubMed  Google Scholar 

  18. Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524

    Article  CAS  PubMed  Google Scholar 

  19. de Candia P, Solit DB, Giri D et al (2003) Angiogenesis impairment in Id-deficient mice cooperates with an Hsp90 inhibitor to completely suppress HER2/neu-dependent breast tumors. Proc Natl Acad Sci USA 100:12337–12342

    Article  PubMed  Google Scholar 

  20. Lyden D, Young AZ, Zagzag D et al (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumor xenografts. Nature 401:670–677

    Article  CAS  PubMed  Google Scholar 

  21. Butz K, Denk C, Ullmann A, Scheffner M, Hoppe-Seyler F (2000) Induction of apoptosis in human papillomavirus positive cancer cells by peptide aptamers targeting the viral E6 oncoprotein. Proc Natl Acad Sci USA 97:6693–6697

    Article  CAS  PubMed  Google Scholar 

  22. Butz K, Denk C, Fitscher B et al (2001) Peptide aptamers targeting the hepatitis B virus core protein: a new class of molecules with antiviral activity. Oncogene 20:6579–6586

    Article  CAS  PubMed  Google Scholar 

  23. Chattopadhyay A, Tatel SA, Beswick RW, Wagner SD, Ferrign PK (2006) A peptide aptamer to antagonize BCL-6 function. Oncogene 25:2223–2233

    Article  CAS  PubMed  Google Scholar 

  24. Elliott G, O’Hare P (1997) Intercellular trafficking and protein delivery by a herpes virus structural protein. Cell 88:223–233

    Article  CAS  PubMed  Google Scholar 

  25. Phelan A, Elliott G, O’Hare P (1998) Intercellular delivery of functional p53 by the herpes virus protein VP22. Nat Biotechnol 16:440–443

    Article  CAS  PubMed  Google Scholar 

  26. Chen C, Okayama H (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7:2745–2752

    CAS  PubMed  Google Scholar 

  27. Weintraub H, Davis R, Lockshon D, Lassar A (1990) Muscle-specific transcriptional activation by MyoD. Proc Natl Acad Sci USA 87:5623–5627

    Article  CAS  PubMed  Google Scholar 

  28. Zi X, Grasso AW, Kung HJ, Agarwal R (1998) A flavonoid antioxidant, silymarin, inhibits activation of erbB1 signaling and induces cyclin-dependent kinase inhibitors, G1 arrest, and anticarcinogenic effects in human prostate carcinoma DU145 cells. Cancer Res 58:1920–1929

    CAS  PubMed  Google Scholar 

  29. Robson CN, Gnanapragasam V, Byrne RL, Collins AT, Neal DE (1999) Transforming growth factor-beta1 up-regulates p15, p21 and p27 and blocks cell cycling in G1 in human prostate epithelium. J Endocrinol 160:257–266

    Article  CAS  PubMed  Google Scholar 

  30. Waga S, Hannon GJ, Beach D, Stillman B (1994) The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369:574–578

    Article  CAS  PubMed  Google Scholar 

  31. Xiaomeng Z, Ming-Tat L, Yong-Chuan W, Xianghong W (2007) Evidence of a novel antiapoptotic factor: role of inhibitor of differentiation or DNA binding (Id-1) in anticancer drug-induced apoptosis. Cancer Sci 98:308–314

    Article  Google Scholar 

  32. Henke E, Perk J, Vider J et al (2008) Peptide-conjugated antisense oligonucleotides for targeted inhibition of transcriptional regulator in vivo. Nat Biotechnol 26:91–100

    Article  CAS  PubMed  Google Scholar 

  33. Ciarapica R, Annibali D, Raimondi L, Savino M, Nasi S, Rota R (2009) Targeting Id protein interactions by an engineered HLH domain induces human neuroblastoma cell differentiation. Oncogene 28:1881–1891

    Article  CAS  PubMed  Google Scholar 

  34. Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22

    Article  CAS  PubMed  Google Scholar 

  35. Ling MT, Wang X, Zhang X, Wong YC (2006) The multiple roles of Id-1 in cancer progression. Differentiation 74:481–487

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank R. Benezra (Sloan-Kettering Institute for Cancer Research, New York, USA) for providing plasmids pGL4.1-4Rtk-luc and pcDNA3-E47 and S. Schmitt (Core Facility Flow Cytometry, DKFZ), and S. Poppelreuter (Carl Zeiss MicroImaging GmbH) for supporting in cell cycle profiling and fluorescence microscopy. This study was supported by the Deutsche Forschungsgemeinschaft (grant HA3185/2-1and 2-3), the Helmholtz Society (grant VH-NG-213), the German Cancer Research Center and the Dietmar-Hopp Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demissew S. Mern.

Additional information

Jens Hasskarl and Barbara Burwinkel equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mern, D.S., Hoppe-Seyler, K., Hoppe-Seyler, F. et al. Targeting Id1 and Id3 by a specific peptide aptamer induces E-box promoter activity, cell cycle arrest, and apoptosis in breast cancer cells. Breast Cancer Res Treat 124, 623–633 (2010). https://doi.org/10.1007/s10549-010-0810-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0810-6

Keywords

Navigation