Breast Cancer Research and Treatment

, Volume 124, Issue 1, pp 27–38 | Cite as

Mesotrypsin promotes malignant growth of breast cancer cells through shedding of CD109

  • Alexandra Hockla
  • Derek C. Radisky
  • Evette S. RadiskyEmail author
Preclinical study


Serine proteases have been implicated in many stages of cancer development, facilitating tumor cell growth, invasion, and metastasis, and naturally occurring serine protease inhibitors have shown promise as potential anticancer therapeutics. Optimal design of inhibitors as potential therapeutics requires the identification of the specific serine proteases involved in disease progression and the functional targets responsible for the tumor-promoting properties. Here, we use the HMT-3522 breast cancer progression series grown in 3D organotypic culture conditions to find that serine protease inhibitors cause morphological reversion of the malignant T4-2 cells, assessed by inhibition of proliferation and formation of acinar structures with polarization of basal markers, implicating serine protease activity in their malignant growth behavior. We identify PRSS3/mesotrypsin upregulation in T4-2 cells as compared to their nonmalignant progenitors, and show that knockdown of PRSS3 attenuates, and treatment with recombinant purified mesotrypsin enhances, the malignant growth phenotype. Using proteomic methods, we identify CD109 as the functional proteolytic target of mesotrypsin. Our study identifies a new mediator and effector of breast cancer growth and progression.


Proteases Protease inhibitors Tumor microenvironment Three-dimensional culture models Tumor reversion 



This work was supported by United States Department of Defense Breast Cancer Research Program concept grant W81XWH-06-1-0605 (ESR), Florida Department of Health Bankhead-Coley New Investigator Research Grant 07BN-07 (ESR), and the National Cancer Institute CA122086 (DCR)

Supplementary material

10549_2009_699_MOESM1_ESM.pdf (30 kb)
Supplemental Fig. 1 Transcriptional upregulation of selected serine proteases in T4-2 cells as compared with S1 cells. Quantitative PCR was used to assess transcript levels of mesotrypsin, prostatin, TMPRSS3, neurotrypsin, and matriptase-1 in cDNA isolated from S1 and T4-2 cells grown in 3D. Data are expressed as mean ± SD. P < 0.05 (unpaired t test) for all comparisons. (PDF 29 kb)


  1. 1.
    Rawlings ND, Morton FR, Barrett AJ (2006) MEROPS: the peptidase database. Nucleic Acids Res 34:D270–D272CrossRefPubMedGoogle Scholar
  2. 2.
    Borgono CA, Diamandis EP (2004) The emerging roles of human tissue kallikreins in cancer. Nat Rev Cancer 4:876–890CrossRefPubMedGoogle Scholar
  3. 3.
    Duffy MJ (2004) The urokinase plasminogen activator system: role in malignancy. Curr Pharm Des 10:39–49CrossRefPubMedGoogle Scholar
  4. 4.
    Netzel-Arnett S, Hooper JD, Szabo R, Madison EL, Quigley JP, Bugge TH, Antalis TM (2003) Membrane anchored serine proteases: a rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer. Cancer Metastasis Rev 22:237–258CrossRefPubMedGoogle Scholar
  5. 5.
    Nyberg P, Ylipalosaari M, Sorsa T, Salo T (2006) Trypsins and their role in carcinoma growth. Exp Cell Res 312:1219–1228CrossRefPubMedGoogle Scholar
  6. 6.
    Sun Z, Yang P (2004) Role of imbalance between neutrophil elastase and alpha 1-antitrypsin in cancer development and progression. Lancet Oncol 5:182–190CrossRefPubMedGoogle Scholar
  7. 7.
    Bhatt AS, Welm A, Farady CJ, Vasquez M, Wilson K, Craik CS (2007) Coordinate expression and functional profiling identify an extracellular proteolytic signaling pathway. Proc Natl Acad Sci USA 104:5771–5776CrossRefPubMedGoogle Scholar
  8. 8.
    Hansen KK, Oikonomopoulou K, Baruch A, Ramachandran R, Beck P, Diamandis EP, Hollenberg MD (2008) Proteinases as hormones: targets and mechanisms for proteolytic signaling. Biol Chem 389:971–982CrossRefPubMedGoogle Scholar
  9. 9.
    Wilson TJ, Nannuru KC, Futakuchi M, Sadanandam A, Singh RK (2008) Cathepsin G enhances mammary tumor-induced osteolysis by generating soluble receptor activator of nuclear factor-kappaB ligand. Cancer Res 68:5803–5811CrossRefPubMedGoogle Scholar
  10. 10.
    Ruf W, Mueller BM (2006) Thrombin generation and the pathogenesis of cancer. Semin Thromb Hemost 32(Suppl 1):61–68CrossRefPubMedGoogle Scholar
  11. 11.
    Armstrong WB, Kennedy AR, Wan XS, Taylor TH, Nguyen QA, Jensen J, Thompson W, Lagerberg W, Meyskens FL Jr (2000) Clinical modulation of oral leukoplakia and protease activity by Bowman–Birk inhibitor concentrate in a phase IIa chemoprevention trial. Clin Cancer Res 6:4684–4691PubMedGoogle Scholar
  12. 12.
    Kennedy AR (1998) Chemopreventive agents: protease inhibitors. Pharmacol Ther 78:167–209CrossRefPubMedGoogle Scholar
  13. 13.
    Kobayashi H, Yagyu T, Inagaki K, Kondo T, Suzuki M, Kanayama N, Terao T (2004) Therapeutic efficacy of once-daily oral administration of a Kunitz-type protease inhibitor, bikunin, in a mouse model and in human cancer. Cancer 100:869–877CrossRefPubMedGoogle Scholar
  14. 14.
    Kobayashi H, Suzuki M, Hirashima Y, Terao T (2003) The protease inhibitor bikunin, a novel anti-metastatic agent. Biol Chem 384:749–754CrossRefPubMedGoogle Scholar
  15. 15.
    Malkowicz SB, McKenna WG, Vaughn DJ, Wan XS, Propert KJ, Rockwell K, Marks SH, Wein AJ, Kennedy AR (2001) Effects of Bowman–Birk inhibitor concentrate (BBIC) in patients with benign prostatic hyperplasia. Prostate 48:16–28CrossRefPubMedGoogle Scholar
  16. 16.
    Putnam JB, Royston D, Chambers AF, Dunbar S, Lemmer JH, Norman P, Travis E, Vaporciyan AA, Yang S, Zacharski LR (2003) Evaluating the role of serine protease inhibition in the management of tumor micrometastases. Oncology (Williston Park) 17:9–30 quiz 31-32Google Scholar
  17. 17.
    Nguyen HH, Aronchik I, Brar GA, Nguyen DH, Bjeldanes LF, Firestone GL (2008) The dietary phytochemical indole-3-carbinol is a natural elastase enzymatic inhibitor that disrupts cyclin E protein processing. Proc Natl Acad Sci USA 105:19750–19755CrossRefPubMedGoogle Scholar
  18. 18.
    Lippman SM, Matrisian LM (2000) Protease inhibitors in oral carcinogenesis and chemoprevention. Clin Cancer Res 6:4599–4603PubMedGoogle Scholar
  19. 19.
    Cuzick J (2003) Treatment of DCIS—results from clinical trials. Surg Oncol 12:213–219CrossRefPubMedGoogle Scholar
  20. 20.
    Senn HJ, Morant R (2008) Chemoprevention of breast and prostate cancers: where do we stand? Ann Oncol 19(Suppl 7):vii234–vii237CrossRefPubMedGoogle Scholar
  21. 21.
    Berry DA, Cronin KA, Plevritis SK, Fryback DG, Clarke L, Zelen M, Mandelblatt JS, Yakovlev AY, Habbema JD, Feuer EJ (2005) Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med 353:1784–1792CrossRefPubMedGoogle Scholar
  22. 22.
    Jatoi I, Chen BE, Anderson WF, Rosenberg PS (2007) Breast cancer mortality trends in the United States according to estrogen receptor status and age at diagnosis. J Clin Oncol 25:1683–1690CrossRefPubMedGoogle Scholar
  23. 23.
    Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1:46–54CrossRefPubMedGoogle Scholar
  24. 24.
    Bissell MJ, Radisky DC, Rizki A, Weaver VM, Petersen OW (2002) The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 70:537–546CrossRefPubMedGoogle Scholar
  25. 25.
    Wang F, Hansen RK, Radisky D, Yoneda T, Barcellos-Hoff MH, Petersen OW, Turley EA, Bissell MJ (2002) Phenotypic reversion or death of cancer cells by altering signaling pathways in three-dimensional contexts. J Natl Cancer Inst 94:1494–1503PubMedGoogle Scholar
  26. 26.
    Weaver VM, Petersen OW, Wang F, Larabell CA, Briand P, Damsky C, Bissell MJ (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137:231–245CrossRefPubMedGoogle Scholar
  27. 27.
    Park CC, Zhang H, Pallavicini M, Gray JW, Baehner F, Park CJ, Bissell MJ (2006) Beta1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Res 66:1526–1535CrossRefPubMedGoogle Scholar
  28. 28.
    Wang F, Weaver VM, Petersen OW, Larabell CA, Dedhar S, Briand P, Lupu R, Bissell MJ (1998) Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc Natl Acad Sci USA 95:14821–14826CrossRefPubMedGoogle Scholar
  29. 29.
    Lee GY, Kenny PA, Lee EH, Bissell MJ (2007) Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4:359–365CrossRefPubMedGoogle Scholar
  30. 30.
    Salameh MA, Soares AS, Hockla A, Radisky ES (2008) Structural basis for accelerated cleavage of bovine pancreatic trypsin inhibitor (BPTI) by human mesotrypsin. J Biol Chem 283:4115–4123CrossRefPubMedGoogle Scholar
  31. 31.
    Szmola R, Kukor Z, Sahin-Toth M (2003) Human mesotrypsin is a unique digestive protease specialized for the degradation of trypsin inhibitors. J Biol Chem 278:48580–48589CrossRefPubMedGoogle Scholar
  32. 32.
    Chase T Jr, Shaw E (1967) p-Nitrophenyl-p′-guanidinobenzoate HCl: a new active site titrant for trypsin. Biochem Biophys Res Commun 29:508–514CrossRefPubMedGoogle Scholar
  33. 33.
    Dachsel JC, Taylor JP, Mok SS, Ross OA, Hinkle KM, Bailey RM, Hines JH, Szutu J, Madden B, Petrucelli L et al (2007) Identification of potential protein interactors of Lrrk2. Parkinsonism Relat Disord 13:382–385CrossRefPubMedGoogle Scholar
  34. 34.
    Jessani N, Humphrey M, McDonald WH, Niessen S, Masuda K, Gangadharan B, Yates JR III, Mueller BM, Cravatt BF (2004) Carcinoma and stromal enzyme activity profiles associated with breast tumor growth in vivo. Proc Natl Acad Sci USA 101:13756–13761CrossRefPubMedGoogle Scholar
  35. 35.
    Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174CrossRefPubMedGoogle Scholar
  36. 36.
    Debnath J, Brugge JS (2005) Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer 5:675–688CrossRefPubMedGoogle Scholar
  37. 37.
    Schmeichel KL, Bissell MJ (2003) Modeling tissue-specific signaling and organ function in three dimensions. J Cell Sci 116:2377–2388CrossRefPubMedGoogle Scholar
  38. 38.
    Shaw KR, Wrobel CN, Brugge JS (2004) Use of three-dimensional basement membrane cultures to model oncogene-induced changes in mammary epithelial morphogenesis. J Mammary Gland Biol Neoplasia 9:297–310CrossRefPubMedGoogle Scholar
  39. 39.
    Kenny PA, Bissell MJ (2003) Tumor reversion: correction of malignant behavior by microenvironmental cues. Int J Cancer 107:688–695CrossRefPubMedGoogle Scholar
  40. 40.
    Liu H, Radisky DC, Wang F, Bissell MJ (2004) Polarity and proliferation are controlled by distinct signaling pathways downstream of PI3-kinase in breast epithelial tumor cells. J Cell Biol 164:603–612CrossRefPubMedGoogle Scholar
  41. 41.
    Muschler J, Levy D, Boudreau R, Henry M, Campbell K, Bissell MJ (2002) A role for dystroglycan in epithelial polarization: loss of function in breast tumor cells. Cancer Res 62:7102–7109PubMedGoogle Scholar
  42. 42.
    Chen HM, Schmeichel KL, Mian IS, Lelievre S, Petersen OW, Bissell MJ (2000) AZU-1: a candidate breast tumor suppressor and biomarker for tumor progression. Mol Biol Cell 11:1357–1367PubMedGoogle Scholar
  43. 43.
    Diederichs S, Bulk E, Steffen B, Ji P, Tickenbrock L, Lang K, Zanker KS, Metzger R, Schneider PM, Gerke V et al (2004) S100 family members and trypsinogens are predictors of distant metastasis and survival in early-stage non-small cell lung cancer. Cancer Res 64:5564–5569CrossRefPubMedGoogle Scholar
  44. 44.
    Han B, Nakamura M, Mori I, Nakamura Y, Kakudo K (2005) Urokinase-type plasminogen activator system and breast cancer (review). Oncol Rep 14:105–112PubMedGoogle Scholar
  45. 45.
    Kang JY, Dolled-Filhart M, Ocal IT, Singh B, Lin CY, Dickson RB, Rimm DL, Camp RL (2003) Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res 63:1101–1105PubMedGoogle Scholar
  46. 46.
    Parr C, Watkins G, Mansel RE, Jiang WG (2004) The hepatocyte growth factor regulatory factors in human breast cancer. Clin Cancer Res 10:202–211CrossRefPubMedGoogle Scholar
  47. 47.
    Overall CM, Tam EM, Kappelhoff R, Connor A, Ewart T, Morrison CJ, Puente X, Lopez-Otin C, Seth A (2004) Protease degradomics: mass spectrometry discovery of protease substrates and the CLIP-CHIP, a dedicated DNA microarray of all human proteases and inhibitors. Biol Chem 385:493–504CrossRefPubMedGoogle Scholar
  48. 48.
    Kenny PA, Lee GY, Myers CA, Neve RM, Semeiks JR, Spellman PT, Lorenz K, Lee EH, Barcellos-Hoff MH, Petersen OW et al (2007) The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol 1:84–96CrossRefPubMedGoogle Scholar
  49. 49.
    Katona G, Berglund GI, Hajdu J, Graf L, Szilagyi L (2002) Crystal structure reveals basis for the inhibitor resistance of human brain trypsin. J Mol Biol 315:1209–1218CrossRefPubMedGoogle Scholar
  50. 50.
    Cottrell GS, Amadesi S, Grady EF, Bunnett NW (2004) Trypsin IV, a novel agonist of protease-activated receptors 2 and 4. J Biol Chem 279:13532–13539CrossRefPubMedGoogle Scholar
  51. 51.
    Dozmorov MG, Hurst RE, Culkin DJ, Kropp BP, Frank MB, Osban J, Penning TM, Lin HK (2009) Unique patterns of molecular profiling between human prostate cancer LNCaP and PC-3 cells. Prostate 69:1077–1090CrossRefPubMedGoogle Scholar
  52. 52.
    Yang L, Zhang L, Wu Q, Boyd DD (2008) Unbiased screening for transcriptional targets of ZKSCAN3 identifies integrin beta 4 and vascular endothelial growth factor as downstream targets. J Biol Chem 283:35295–35304CrossRefPubMedGoogle Scholar
  53. 53.
    Takeuchi T, Shuman MA, Craik CS (1999) Reverse biochemistry: use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue. Proc Natl Acad Sci USA 96:11054–11061CrossRefPubMedGoogle Scholar
  54. 54.
    Yamashita K, Mimori K, Inoue H, Mori M, Sidransky D (2003) A tumor-suppressive role for trypsin in human cancer progression. Cancer Res 63:6575–6578PubMedGoogle Scholar
  55. 55.
    Marsit CJ, Okpukpara C, Danaee H, Kelsey KT (2005) Epigenetic silencing of the PRSS3 putative tumor suppressor gene in non-small cell lung cancer. Mol Carcinog 44:146–150CrossRefPubMedGoogle Scholar
  56. 56.
    Marsit CJ, Karagas MR, Danaee H, Liu M, Andrew A, Schned A, Nelson HH, Kelsey KT (2006) Carcinogen exposure and gene promoter hypermethylation in bladder cancer. Carcinogenesis 27:112–116CrossRefPubMedGoogle Scholar
  57. 57.
    Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366:2–16CrossRefPubMedGoogle Scholar
  58. 58.
    Flynn JF, Wong C, Wu JM (2009) Anti-EGFR therapy: mechanism and advances in clinical efficacy in breast cancer. J Oncol 2009:526963PubMedGoogle Scholar
  59. 59.
    Desgrosellier JS, Barnes LA, Shields DJ, Huang M, Lau SK, Prevost N, Tarin D, Shattil SJ, Cheresh DA (2009) An integrin alpha(v)beta(3)-c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nat Med 15:1163–1169CrossRefPubMedGoogle Scholar
  60. 60.
    Zhao Y, Bachelier R, Treilleux I, Pujuguet P, Peyruchaud O, Baron R, Clement-Lacroix P, Clezardin P (2007) Tumor alphavbeta3 integrin is a therapeutic target for breast cancer bone metastases. Cancer Res 67:5821–5830CrossRefPubMedGoogle Scholar
  61. 61.
    Pestov DG, Grzeszkiewicz TM, Lau LF (1998) Isolation of growth suppressors from a cDNA expression library. Oncogene 17:3187–3197CrossRefPubMedGoogle Scholar
  62. 62.
    Killian A, Sarafan-Vasseur N, Sesboue R, Le Pessot F, Blanchard F, Lamy A, Laurent M, Flaman JM, Frebourg T (2006) Contribution of the BOP1 gene, located on 8q24, to colorectal tumorigenesis. Genes Chromosomes Cancer 45:874–881CrossRefPubMedGoogle Scholar
  63. 63.
    Bach JP, Rinn B, Meyer B, Dodel R, Bacher M (2008) Role of MIF in inflammation and tumorigenesis. Oncology 75:127–133CrossRefPubMedGoogle Scholar
  64. 64.
    Meyer-Siegler KL, Iczkowski KA, Leng L, Bucala R, Vera PL (2006) Inhibition of macrophage migration inhibitory factor or its receptor (CD74) attenuates growth and invasion of DU-145 prostate cancer cells. J Immunol 177:8730–8739PubMedGoogle Scholar
  65. 65.
    Verjans E, Noetzel E, Bektas N, Schutz AK, Lue H, Lennartz B, Hartmann A, Dahl E, Bernhagen J (2009) Dual role of macrophage migration inhibitory factor (MIF) in human breast cancer. BMC Cancer 9:230CrossRefPubMedGoogle Scholar
  66. 66.
    Jiang X, Guo YL, Bromberg ME (2006) Formation of tissue factor-factor VIIa-factor Xa complex prevents apoptosis in human breast cancer cells. Thromb Haemost 96:196–201PubMedGoogle Scholar
  67. 67.
    Jiang X, Zhu S, Panetti TS, Bromberg ME (2008) Formation of tissue factor-factor VIIa-factor Xa complex induces activation of the mTOR pathway which regulates migration of human breast cancer cells. Thromb Haemost 100:127–133PubMedGoogle Scholar
  68. 68.
    Versteeg HH, Schaffner F, Kerver M, Ellies LG, Andrade-Gordon P, Mueller BM, Ruf W (2008) Protease-activated receptor (PAR) 2, but not PAR1, signaling promotes the development of mammary adenocarcinoma in polyoma middle T mice. Cancer Res 68:7219–7227CrossRefPubMedGoogle Scholar
  69. 69.
    Arora P, Cuevas BD, Russo A, Johnson GL, Trejo J (2008) Persistent transactivation of EGFR and ErbB2/HER2 by protease-activated receptor-1 promotes breast carcinoma cell invasion. Oncogene 27:4434–4445CrossRefPubMedGoogle Scholar
  70. 70.
    Grishina Z, Ostrowska E, Halangk W, Sahin-Toth M, Reiser G (2005) Activity of recombinant trypsin isoforms on human proteinase-activated receptors (PAR): mesotrypsin cannot activate epithelial PAR-1, -2, but weakly activates brain PAR-1. Br J Pharmacol 146:990–999CrossRefPubMedGoogle Scholar
  71. 71.
    Hashimoto M, Ichihara M, Watanabe T, Kawai K, Koshikawa K, Yuasa N, Takahashi T, Yatabe Y, Murakumo Y, Zhang JM et al (2004) Expression of CD109 in human cancer. Oncogene 23:3716–3720CrossRefPubMedGoogle Scholar
  72. 72.
    Sato T, Murakumo Y, Hagiwara S, Jijiwa M, Suzuki C, Yatabe Y, Takahashi M (2007) High-level expression of CD109 is frequently detected in lung squamous cell carcinomas. Pathol Int 57:719–724CrossRefPubMedGoogle Scholar
  73. 73.
    Zhang JM, Hashimoto M, Kawai K, Murakumo Y, Sato T, Ichihara M, Nakamura S, Takahashi M (2005) CD109 expression in squamous cell carcinoma of the uterine cervix. Pathol Int 55:165–169CrossRefPubMedGoogle Scholar
  74. 74.
    Hasegawa M, Moritani S, Murakumo Y, Sato T, Hagiwara S, Suzuki C, Mii S, Jijiwa M, Enomoto A, Asai N et al (2008) CD109 expression in basal-like breast carcinoma. Pathol Int 58:288–294CrossRefPubMedGoogle Scholar
  75. 75.
    Lin M, Sutherland DR, Horsfall W, Totty N, Yeo E, Nayar R, Wu XF, Schuh AC (2002) Cell surface antigen CD109 is a novel member of the alpha(2) macroglobulin/C3, C4, C5 family of thioester-containing proteins. Blood 99:1683–1691CrossRefPubMedGoogle Scholar
  76. 76.
    Solomon KR, Sharma P, Chan M, Morrison PT, Finberg RW (2004) CD109 represents a novel branch of the alpha2-macroglobulin/complement gene family. Gene 327:171–183CrossRefPubMedGoogle Scholar
  77. 77.
    Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392CrossRefPubMedGoogle Scholar
  78. 78.
    Fingleton B (2008) MMPs as therapeutic targets—still a viable option? Semin Cell Dev Biol 19:61–68CrossRefPubMedGoogle Scholar
  79. 79.
    Sparano JA, Bernardo P, Stephenson P, Gradishar WJ, Ingle JN, Zucker S, Davidson NE (2004) Randomized phase III trial of marimastat versus placebo in patients with metastatic breast cancer who have responding or stable disease after first-line chemotherapy: Eastern Cooperative Oncology Group trial E2196. J Clin Oncol 22:4683–4690CrossRefPubMedGoogle Scholar
  80. 80.
    Miller KD, Gradishar W, Schuchter L, Sparano JA, Cobleigh M, Robert N, Rasmussen H, Sledge GW (2002) A randomized phase II pilot trial of adjuvant marimastat in patients with early-stage breast cancer. Ann Oncol 13:1220–1224CrossRefPubMedGoogle Scholar
  81. 81.
    Miller KD, Saphner TJ, Waterhouse DM, Chen TT, Rush-Taylor A, Sparano JA, Wolff AC, Cobleigh MA, Galbraith S, Sledge GW (2004) A randomized phase II feasibility trial of BMS-275291 in patients with early stage breast cancer. Clin Cancer Res 10:1971–1975CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Alexandra Hockla
    • 1
  • Derek C. Radisky
    • 1
  • Evette S. Radisky
    • 1
    Email author
  1. 1.Mayo Clinic Cancer CenterJacksonvilleUSA

Personalised recommendations