Dietary acrylamide intake and estrogen and progesterone receptor-defined postmenopausal breast cancer risk

Abstract

Acrylamide, a potential human carcinogen, has been discovered in a variety of heat-treated carbohydrate-rich food products. Previously, dietary acrylamide intake was shown to be associated with endocrine-related cancers in humans. We assessed the association between dietary acrylamide intake and risk of postmenopausal breast cancer stratified by estrogen and progesterone receptor status. This study was embedded within the Netherlands Cohort Study on diet and cancer, which was initiated in 1986 enrolling 62,573 women aged 55–69 years at baseline. After 13.3 years of follow-up, 2225 incident breast cancer cases were ascertained, with hormone receptor status information for 43%. Cox proportional hazards analysis was applied to determine hazard ratios in quintiles of dietary acrylamide intake stratifying on estrogen receptor (ER) and progesterone receptor (PR) and smoking status. No association was observed for overall breast cancer or receptor-negative breast cancer risk, irrespective of smoking status. A statistically non-significantly increased risk of ER positive, PR positive and joint receptor-positive breast cancer was found in never-smoking women. The multivariable-adjusted hazard ratios were 1.31 (95% CI: 0.87–1.97, P trend = 0.26) for ER+, 1.47 (0.86–2.51, P trend = 0.14) for PR+, and 1.43 (0.83–2.46, P trend = 0.16) for ER+PR+, when comparing women in the highest quintile of acrylamide intake (median 36.8 μg/day) to women in the lowest (median 9.5 μg/day). This study showed some indications of a positive association between dietary acrylamide intake and receptor-positive breast cancer risk in postmenopausal never-smoking women. Further studies are needed to confirm or refute our observations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Parkin DM (2001) Global cancer statistics in the year 2000. Lancet Oncol 2(9):533–543

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Hankinson S, Hunter D (2002) Breast cancer. In: Adami HO, Hunter DJ, Trichopoulos D (eds) Textbook of cancer epidemiology. Oxford University Press, New York

    Google Scholar 

  3. 3.

    Althuis MD, Fergenbaum JH, Garcia-Closas M, Brinton LA, Madigan MP, Sherman ME (2004) Etiology of hormone receptor-defined breast cancer: a systematic review of the literature. Cancer Epidemiol Biomarkers Prev 13(10):1558–1568

    CAS  PubMed  Google Scholar 

  4. 4.

    Tareke E, Rydberg P, Karlsson P, Eriksson S, Tornqvist M (2002) Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem 50(17):4998–5006

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Mottram DS, Wedzicha BL, Dodson AT (2002) Acrylamide is formed in the Maillard reaction. Nature 419(6906):448–449

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Schettgen T, Rossbach B, Kutting B, Letzel S, Drexler H, Angerer J (2004) Determination of haemoglobin adducts of acrylamide and glycidamide in smoking and non-smoking persons of the general population. Int J Hyg Environ Health 207(6):531–539

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Dybing E, Farmer PB, Andersen M et al (2005) Human exposure and internal dose assessments of acrylamide in food. Food Chem Toxicol 43(3):365–410

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Olesen PT, Olsen A, Frandsen H, Frederiksen K, Overvad K, Tjonneland A (2008) Acrylamide exposure and incidence of breast cancer among postmenopausal women in the Danish Diet, Cancer and Health Study. Int J Cancer 122(9):2094–2100

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Hogervorst JG, Schouten LJ, Konings EJ, Goldbohm RA, van den Brandt PA (2007) A prospective study of dietary acrylamide intake and the risk of endometrial, ovarian, and breast cancer. Cancer Epidemiol Biomarkers Prev 16(11):2304–2313

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Besaratinia A, Pfeifer GP (2007) A review of mechanisms of acrylamide carcinogenicity. Carcinogenesis 28(3):519–528

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    van den Brandt PA, Goldbohm RA, van’t Veer P, Volovics A, Hermus RJ, Sturmans F (1990) A large-scale prospective cohort study on diet and cancer in The Netherlands. J Clin Epidemiol 43(3):285–295

    Article  PubMed  Google Scholar 

  12. 12.

    Goldbohm RA, van den Brandt PA, Dorant E (1994) Estimation of the coverage of Dutch municipalities by cancer registries and PALGA based on hospital discharge data. Tijdschr Soc Gezondheidsz 72:80–84

    Google Scholar 

  13. 13.

    Schoenfeld D (1982) Partial residuals for the proportional hazards regression model. Biometrika 69:239–241

    Article  Google Scholar 

  14. 14.

    Key TJ, Verkasalo PK, Banks E (2001) Epidemiology of breast cancer. Lancet Oncol 2(3):133–140

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Tanko LB, Christiansen C (2004) An update on the antiestrogenic effect of smoking: a literature review with implications for researchers and practitioners. Menopause 11(1):104–109

    Article  PubMed  Google Scholar 

  16. 16.

    Larsson SC, Akesson A, Wolk A (2008) Long-term dietary acrylamide intake and breast cancer risk in a prospective cohort of Swedish women. Am J Epidemiol 169(3):376–381

    Article  PubMed  Google Scholar 

  17. 17.

    Wilson KM, Mucci LA, Cho E, Hunter DJ, Chen WY, Willett WC (2009) Dietary acrylamide intake and risk of premenopausal breast cancer. Am J Epidemiol 169(8):954–961

    Article  PubMed  Google Scholar 

  18. 18.

    Linkov F, Edwards R, Balk J et al (2008) Endometrial hyperplasia, endometrial cancer and prevention: gaps in existing research of modifiable risk factors. Eur J Cancer 44(12):1632–1644

    Article  PubMed  Google Scholar 

  19. 19.

    Riman T, Nilsson R, Persson IR (2004) Review of epidemiological evidence for reproductive and hormonal factors in relation to the risk of epithelial ovarian malignancies. Acta Obset Gynecol Scand 83(9):783–795

    Google Scholar 

  20. 20.

    Clement FC, Dip R, Naegeli H (2007) Expression profile of human cells in culture exposed to glycidamide, a reactive metabolite of the heat-induced food carcinogen acrylamide. Toxicology 240(1–2):111–124

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Rosenberg LU, Einarsdottir K, Friman EI et al (2006) Risk factors for hormone receptor-defined breast cancer in postmenopausal women. Cancer Epidemiol Biomarkers Prev 15(12):2482–2488

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Speirs V, Walker RA (2007) New perspectives into the biological and clinical relevance of oestrogen receptors in the human breast. J Pathol 211(5):499–506

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Kian TM, Rogatsky I, Tzagarakis-Foster C et al (2004) Estradiol and selective estrogen receptor modulators differentially regulate target genes with estrogen receptors alpha and beta. Mol Biol Cell 15(3):1262–1272

    Article  Google Scholar 

  24. 24.

    Tang N, Zhou B, Wang B, Yu R (2009) Coffee consumption and risk of breast cancer: a metaanalysis. Am J Obstet Gynecol 200(3):290–299

    Article  PubMed  Google Scholar 

  25. 25.

    Cai J, Zeng D (2004) Sample size/power calculation for case-cohort studies. Biometrics 60(4):1015–1024

    Article  PubMed  Google Scholar 

  26. 26.

    Goldbohm RA, van den Brandt PA, Brants HA et al (1994) Validation of a dietary questionnaire used in a large-scale prospective cohort study on diet and cancer. Eur J Clin Nutr 48(4):253–265

    CAS  PubMed  Google Scholar 

  27. 27.

    Petersen BJ, Tran N (2005) Exposure to acrylamide: placing exposure in context. Adv Exp Med Biol 561:63–76

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Zafrani B, Aubriot MH, Mouret E et al (2000) High sensitivity and specificity of immunohistochemistry for the detection of hormone receptors in breast carcinoma: comparison with biochemical determination in a prospective study of 793 cases. Histopathology 37(6):536–545

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to the participants of this study and further wish to thank the cancer registries (IKA, IKL, IKMN, IKN, IKO, IKR, IKST, IKW, IKZ and VIKC), and the Netherlands nationwide registry of pathology (PALGA). We thank Arnold Kester, PhD, from Maastricht University for statistical advice; Sacha van de Crommert, Henny Brants, Jolanda Nelissen, Conny de Zwart, Annemie Pisters from Maastricht University, and Willy van Dijk and Martine Jansen from TNO Quality of Life for assistance; Linda van den Bosch from TNO Quality of Life, and Jack Berben and Harry van Montfort from Maastricht University for programming assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Janneke G. F. Hogervorst.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pedersen, G.S., Hogervorst, J.G.F., Schouten, L.J. et al. Dietary acrylamide intake and estrogen and progesterone receptor-defined postmenopausal breast cancer risk. Breast Cancer Res Treat 122, 199–210 (2010). https://doi.org/10.1007/s10549-009-0642-4

Download citation

Keywords

  • Acrylamide
  • Diet
  • Breast cancer
  • Estrogen receptor
  • Progesterone receptor