Skip to main content

Advertisement

Log in

Identification of WEE1 as a potential molecular target in cancer cells by RNAi screening of the human tyrosine kinome

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Breast cancers can be classified into those that express the estrogen (ER) and progesterone (PR) receptors, those with ERBB2 (HER-2/Neu) amplification, and those without expression of ER, PR, or amplification of ERBB2 (referred to as triple-negative or basal-like breast cancer). In order to identify potential molecular targets in breast cancer, we performed a synthetic siRNA-mediated RNAi screen of the human tyrosine kinome. A primary RNAi screen conducted in the triple-negative/basal-like breast cancer cell line MDA-MB231 followed by secondary RNAi screens and further studies in this cell line and two additional triple-negative/basal-like breast cancer cell lines, BT20 and HCC1937, identified the G2/M checkpoint protein, WEE1, as a potential therapeutic target. Similar sensitivity to WEE1 inhibition was observed in cell lines from all subtypes of breast cancer. RNAi-mediated silencing or small compound inhibition of WEE1 in breast cancer cell lines resulted in an increase in γH2AX levels, arrest in the S-phase of the cell cycle, and a significant decrease in cell proliferation. WEE1-inhibited cells underwent apoptosis as demonstrated by positive Annexin V staining, increased sub-G1 DNA content, apoptotic morphology, caspase activation, and rescue by the pan-caspase inhibitor, Z-VAD-FMK. In contrast, the non-transformed mammary epithelial cell line, MCF10A, did not exhibit any of these downstream effects following WEE1 silencing or inhibition. These results identify WEE1 as a potential molecular target in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brenton JD, Carey LA, Ahmed AA, Caldas C (2005) Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol 23(29):7350–7360

    Article  CAS  PubMed  Google Scholar 

  2. Irvin WJ Jr, Carey LA (2008) What is triple-negative breast cancer? Eur J Cancer 44(18):2799–2805

    Article  CAS  PubMed  Google Scholar 

  3. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bertucci F, Finetti P, Cervera N, Esterni B, Hermitte F, Viens P, Birnbaum D (2008) How basal are triple-negative breast cancers? Int J Cancer 123(1):236–240

    Article  CAS  PubMed  Google Scholar 

  5. Charafe-Jauffret E, Ginestier C, Monville F et al (2006) Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene 25(15):2273–2284

    Article  CAS  PubMed  Google Scholar 

  6. Neve RM, Chin K, Fridlyand J et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934

    Article  CAS  PubMed  Google Scholar 

  8. Hunter T (1987) A thousand and one protein kinases. Cell 50(6):823–829

    Article  CAS  PubMed  Google Scholar 

  9. Krause DS, Van Etten RA (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med 353(2):172–187

    Article  CAS  PubMed  Google Scholar 

  10. MacKeigan JP, Murphy LO, Blenis J (2005) Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 7(6):591–600

    Article  CAS  PubMed  Google Scholar 

  11. Bettencourt-Dias M, Giet R, Sinka R et al (2004) Genome-wide survey of protein kinases required for cell cycle progression. Nature 432(7020):980–987

    Article  CAS  PubMed  Google Scholar 

  12. Giroux V, Iovanna J, Dagorn JC (2006) Probing the human kinome for kinases involved in pancreatic cancer cell survival and gemcitabine resistance. FASEB J 20(12):1982–1991

    Article  CAS  PubMed  Google Scholar 

  13. Rahman M, Davis SR, Pumphrey JG, Bao J, Nau MM, Meltzer PS, Lipkowitz S (2009) TRAIL induces apoptosis in triple-negative breast cancer cells with a mesenchymal phenotype. Breast Cancer Res Treat 113(2):217–230

    Article  PubMed  Google Scholar 

  14. http://www.stanford.edu/group/gozani/Histone%20extraction%20protocol.pdf [cited]

  15. McGowan CH, Russell P (1993) Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15. EMBO J 12(1):75–85

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Palmer BD, Thompson AM, Booth RJ et al (2006) 4-Phenylpyrrolo[3, 4-c]carbazole-1, 3(2H, 6H)-dione inhibitors of the checkpoint kinase Wee1. Structure–activity relationships for chromophore modification and phenyl ring substitution. J Med Chem 49(16):4896–4911

    Article  CAS  PubMed  Google Scholar 

  17. Iorns E, Lord CJ, Grigoriadis A et al (2009) Integrated functional, gene expression and genomic analysis for the identification of cancer targets. PLoS ONE 4(4):e5120

    Article  PubMed  PubMed Central  Google Scholar 

  18. Niida H, Nakanishi M (2006) DNA damage checkpoints in mammals. Mutagenesis 21(1):3–9

    Article  CAS  PubMed  Google Scholar 

  19. Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146(5):905–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tyner JW, Walters DK, Willis SG et al (2008) RNAi screening of the tyrosine kinome identifies therapeutic targets in acute myeloid leukemia. Blood 111(4):2238–2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O’Connell MJ, Raleigh JM, Verkade HM, Nurse P (1997) Chk1 is a wee1 kinase in the G2 DNA damage checkpoint inhibiting cdc2 by Y15 phosphorylation. EMBO J 16(3):545–554

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yuli C, Shao N, Rao R et al (2007) BRCA1a has antitumor activity in TN breast, ovarian and prostate cancers. Oncogene 26(41):6031–6037

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Li J, Booher RN, Kraker A, Lawrence T, Leopold WR, Sun Y (2001) Radiosensitization of p53 mutant cells by PD0166285, a novel G(2) checkpoint abrogator. Cancer Res 61(22):8211–8217

    CAS  PubMed  Google Scholar 

  24. Li J, Wang Y, Sun Y, Lawrence TS (2002) Wild-type TP53 inhibits G(2)-phase checkpoint abrogation and radiosensitization induced by PD0166285, a WEE1 kinase inhibitor. Radiat Res 157(3):322–330

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Decker SJ, Sebolt-Leopold J (2004) Knockdown of Chk1, Wee1 and Myt1 by RNA interference abrogates G2 checkpoint and induces apoptosis. Cancer Biol Ther 3(3):305–313

    Article  CAS  PubMed  Google Scholar 

  26. Hashimoto O, Shinkawa M, Torimura T, Nakamura T, Selvendiran K, Sakamoto M, Koga H, Ueno T, Sata M (2006) Cell cycle regulation by the Wee1 inhibitor PD0166285, pyrido [2, 3-d] pyrimidine, in the B16 mouse melanoma cell line. BMC Cancer 6:292

    Article  PubMed  PubMed Central  Google Scholar 

  27. Syljuasen RG, Sorensen CS, Hansen LT et al (2005) Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol 25(9):3553–3562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Niida H, Tsuge S, Katsuno Y, Konishi A, Takeda N, Nakanishi M (2005) Depletion of Chk1 leads to premature activation of Cdc2-cyclin B and mitotic catastrophe. J Biol Chem 280(47):39246–39252

    Article  CAS  PubMed  Google Scholar 

  29. Sidi S, Sanda T, Kennedy RD et al (2008) Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell 133(5):864–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Turner N, Tutt A, Ashworth A (2004) Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 4(10):814–819

    Article  CAS  PubMed  Google Scholar 

  31. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28(6):622–629

    Article  CAS  PubMed  Google Scholar 

  32. Chauvier D, Lecoeur H, Langonne A, Borgne-Sanchez A, Mariani J, Martinou JC, Rebouillat D, Jacotot E (2005) Upstream control of apoptosis by caspase-2 in serum-deprived primary neurons. Apoptosis 10(6):1243–1259

    Article  CAS  PubMed  Google Scholar 

  33. Gregoli PA, Bondurant MC (1999) Function of caspases in regulating apoptosis caused by erythropoietin deprivation in erythroid progenitors. J Cell Physiol 178(2):133–143

    Article  CAS  PubMed  Google Scholar 

  34. Pereira NA, Song Z (2008) Some commonly used caspase substrates and inhibitors lack the specificity required to monitor individual caspase activity. Biochem Biophys Res Commun 377(3):873–877

    Article  CAS  PubMed  Google Scholar 

  35. Schellens JH, Leijen S, Shaprio GI et al. (2009) A phase I and pharmacological study of MK-1775, a Wee1 tyrosine kinase inhibitor, in both monotherapy and in combination with gemcitabine, cisplatin, or carboplatin in patients with advanced solid tumors. J Clin Oncol 27(15s):148s

    Google Scholar 

  36. Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, Pommier Y (2008) GammaH2AX and cancer. Nat Rev Cancer 8(12):957–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sedelnikova OA, Bonner WM (2006) GammaH2AX in cancer cells: a potential biomarker for cancer diagnostics, prediction and recurrence. Cell Cycle 5(24):2909–2913

    Article  CAS  PubMed  Google Scholar 

  38. Hong Y, Cervantes RB, Tichy E, Tischfield JA, Stambrook PJ (2007) Protecting genomic integrity in somatic cells and embryonic stem cells. Mutat Res 614(1–2):48–55

    Article  CAS  PubMed  Google Scholar 

  39. Opar A (2009) Novel anticancer strategy targets DNA repair. Nat Rev Drug Discov 8(6):437–438

    Article  CAS  PubMed  Google Scholar 

  40. O'Shaughnessy J, Osborne C, Pippen J et al (2009) Efficacy of BSI-201, a poly(ADP-ribose) polymerase-1 (PARP1) inhibitor, in combination with gemcitabine/carboplatin (G/C) in patients with metastatic triple-negative breast cancer (TNBC): results of a randomised phase II trial. J Clin Oncol 27(15s):6s

    Google Scholar 

  41. Ashwell S, Zabludoff S (2008) DNA damage detection and repair pathways—recent advances with inhibitors of checkpoint kinases in cancer therapy. Clin Cancer Res 14(13):4032–4037

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Marion Nau for critical reading of this manuscript. Financial Support This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley Lipkowitz.

Additional information

Lyndsay M. Murrow and Sireesha V. Garimella contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 440 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murrow, L.M., Garimella, S.V., Jones, T.L. et al. Identification of WEE1 as a potential molecular target in cancer cells by RNAi screening of the human tyrosine kinome. Breast Cancer Res Treat 122, 347–357 (2010). https://doi.org/10.1007/s10549-009-0571-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0571-2

Keywords

Navigation