Skip to main content

Advertisement

Log in

Induction of the small heat shock protein αB-crystallin by genotoxic stress is mediated by p53 and p73

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The small heat shock protein αB-crystallin is a molecular chaperone that is induced by stress and protects cells by inhibiting protein aggregation and apoptosis. To identify novel transcriptional regulators of the αB-crystallin gene, we examined the αB-crystallin promoter for conserved transcription factor DNA-binding elements and identified a putative response element for the p53 tumor suppressor protein. Ectopic expression of wild-type p53 induced αB-crystallin mRNA and protein with delayed kinetics compared to p21. Additionally, the induction of αB-crystallin by genotoxic stress was inhibited by siRNAs targeting p53. Although the p53-dependent transactivation of an αB-crystallin promoter luciferase reporter required the putative p53RE, chromatin immunoprecipitation failed to detect p53 binding to the αB-crystallin promoter. These results suggested an indirect mechanism of transactivation involving p53 family members p63 or p73. ΔNp73 was dramatically induced by p53 in a TAp73-dependent manner, and silencing p73 suppressed the transcriptional activation of αB-crystallin by p53. Moreover, ectopic expression of ΔNp73α (but not other p73 isoforms) increased αB-crystallin mRNA levels in the absence of p53. Collectively, our results link the molecular chaperone αB-crystallin to the cellular genotoxic stress response via a novel mechanism of transcriptional regulation by p53 and p73.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Clark PJ, Muchowski JI (2000) Small heat-shock proteins and their potential role in human disease. Curr Opin Struct Biol 10:52–59. doi:10.1016/S0959-440X(99)00048-2

    Article  CAS  PubMed  Google Scholar 

  2. Horwitz J (1992) α-crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 89:10449–10453

    Article  CAS  PubMed  Google Scholar 

  3. Shin JH, Piao CS, Lim CM, Lee JK (2008) LEDGF binding to stress response element increases αB-crystallin expression in astrocytes with oxidative stress. Neurosci Lett 435:131–136. doi:10.1016/j.neulet.2008.02.029

    Article  CAS  PubMed  Google Scholar 

  4. Mehlen P, Kretz-Remy C, Preville X, Arrigo AP (1996) Human hsp27, Drosophila hsp27 and human αB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFα-induced cell death. EMBO J 15:2695–2706

    CAS  PubMed  Google Scholar 

  5. Haslbeck M, Franzmann T, Weinfurtner D, Buchner J (2005) Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12:842–846. doi:10.1038/nsmb993

    Article  CAS  PubMed  Google Scholar 

  6. Kamradt MC, Chen F, Cryns VL (2001) The small heat shock protein αB-crystallin negatively regulates cytochrome c- and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation. J Biol Chem 276:16059–16063. doi:10.1074/jbc.C100107200

    Article  CAS  PubMed  Google Scholar 

  7. Kamradt MC, Lu M, Werner ME et al (2005) The small heat shock protein αB-crystallin is a novel inhibitor of TRAIL-induced apoptosis that suppresses the activation of caspase-3. J Biol Chem 280:11059–11066. doi:10.1074/jbc.M413382200

    Article  CAS  PubMed  Google Scholar 

  8. Stegh AH, Kesari S, Mahoney JE et al (2008) Bcl2L12-mediated inhibition of effector caspase-3 and caspase-7 via distinct mechanisms in glioblastoma. Proc Natl Acad Sci USA 105:10703–10708. doi:10.1073/pnas.0712034105

    Article  CAS  PubMed  Google Scholar 

  9. Mao YW, Liu JP, Xiang H, Li DW (2004) Human αA- and αB-crystallins bind to Bax and Bcl-Xs to sequester their translocation during staurosporine-induced apoptosis. Cell Death Differ 11:512–526. doi:10.1038/sj.cdd.4401384

    Article  CAS  PubMed  Google Scholar 

  10. Head MW, Hurwitz L, Goldman JE (1996) Transcription regulation of αB-crystallin in astrocytes: analysis of HSF and AP1 activation by different types of physiological stress. J Cell Sci 109:1029–1039

    CAS  PubMed  Google Scholar 

  11. Singh DP, Fatma N, Kimura A, Chylack LT Jr, Shinohara T (2001) LEDGF binds to heat shock and stress-related element to activate the expression of stress-related genes. Biochem Biophys Res Commun 283:943–955. doi:10.1006/bbrc.2001.4887

    Article  CAS  PubMed  Google Scholar 

  12. Swamynathan SK, Piatigorsky J (2007) Regulation of the mouse αB-crystallin and MKBP/HspB2 promoter activities by shared and gene specific intergenic elements: the importance of context dependency. Int J Dev Biol 51:689–700. doi:10.1387/ijdb.072302ss

    Article  CAS  PubMed  Google Scholar 

  13. Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8:275–283. doi:10.1038/nrm2147

    Article  CAS  PubMed  Google Scholar 

  14. Fontemaggi G, Kela I, Amariglio N et al (2002) Identification of direct p73 target genes combining DNA microarray and chromatin immunoprecipitation analyses. J Biol Chem 277:43359–43368. doi:10.1074/jbc.M205573200

    Article  CAS  PubMed  Google Scholar 

  15. Melino G, Bernassola F, Ranalli M et al (2004) p73 Induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J Biol Chem 279:8076–8083. doi:10.1074/jbc.M307469200

    Article  CAS  PubMed  Google Scholar 

  16. Osada M, Park HL, Nagakawa Y et al (2005) Differential recognition of response elements determines target gene specificity for p53 and p63. Mol Cell Biol 25:6077–6089. doi:10.1128/MCB.25.14.6077-6089.2005

    Article  CAS  PubMed  Google Scholar 

  17. Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F, Jacks T (2002) p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416:560–564. doi:10.1038/416560a

    Article  CAS  PubMed  Google Scholar 

  18. Vayssade M, Haddada H, Faridoni-Laurens L, Tourpin S, Valent A, Benard J, Ahomadegbe JC (2005) P73 functionally replaces p53 in adriamycin-treated, p53-deficient breast cancer cells. Int J Cancer 116:860–869. doi:10.1002/ijc.21033

    Article  CAS  PubMed  Google Scholar 

  19. Beitzinger M, Hofmann L, Oswald C et al (2008) p73 poses a barrier to malignant transformation by limiting anchorage-independent growth. EMBO J 27:792–803. doi:10.1038/emboj.2008.13

    Article  CAS  PubMed  Google Scholar 

  20. Grob TJ, Novak U, Maisse C et al (2001) Human ΔNp73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Differ 8:1213–1223

    Article  CAS  PubMed  Google Scholar 

  21. Stiewe T, Theseling CC, Putzer BM (2002) Transactivation-deficient ΔTA-p73 inhibits p53 by direct competition for DNA binding: implications for tumorigenesis. J Biol Chem 277:14177–14185. doi:10.1074/jbc.M200480200

    Article  CAS  PubMed  Google Scholar 

  22. Petrenko O, Zaika A, Moll UM (2003) ΔNp73 facilitates cell immortalization and cooperates with oncogenic Ras in cellular transformation in vivo. Mol Cell Biol 23:5540–5555. doi:10.1128/MCB.23.16.5540-5555.2003

    Article  CAS  PubMed  Google Scholar 

  23. Pozniak CD, Radinovic S, Yang A, McKeon F, Kaplan DR, Miller FD (2000) An anti-apoptotic role for the p53 family member, p73, during developmental neuron death. Science 289:304–306. doi:10.1126/science.289.5477.304

    Article  CAS  PubMed  Google Scholar 

  24. Casciano I, Mazzocco K, Boni L et al (2002) Expression of ΔNp73 is a molecular marker for adverse outcome in neuroblastoma patients. Cell Death Differ 9:246–251. doi:10.1038/sj/cdd/4400993

    Article  CAS  PubMed  Google Scholar 

  25. Concin N, Hofstetter G, Berger A et al (2005) Clinical relevance of dominant-negative p73 isoforms for responsiveness to chemotherapy and survival in ovarian cancer: evidence for a crucial p53–p73 cross-talk in vivo. Clin Cancer Res 11:8372–8383

    Article  CAS  PubMed  Google Scholar 

  26. Uramoto H, Sugio K, Oyama T, Nakata S, Ono K, Morita M, Funa K, Yasumoto K (2004) Expression of ΔNp73 predicts poor prognosis in lung cancer. Clin Cancer Res 10:6905–6911

    Article  CAS  PubMed  Google Scholar 

  27. Dominguez G, Garcia JM, Pena C et al (2006) ΔTAp73 upregulation correlates with poor prognosis in human tumors: putative in vivo network involving p73 isoforms, p53, and E2F-1. J Clin Oncol 24:805–815. doi:10.1200/JCO.2005.02.2350

    Article  CAS  PubMed  Google Scholar 

  28. Dohn M, Zhang S, Chen X (2001) p63α and ΔNp63alpha can induce cell cycle arrest and apoptosis and differentially regulate p53 target genes. Oncogene 20:3193–3205

    Article  CAS  PubMed  Google Scholar 

  29. Kartasheva NN, Lenz-Bauer C, Hartmann O, Schafer H, Eilers M, Dobbelstein M (2003) ΔNp73 can modulate the expression of various genes in a p53-independent fashion. Oncogene 22:8246–8254. doi:10.1038/sj.onc.1207138

    Article  CAS  PubMed  Google Scholar 

  30. Liu G, Nozell S, Xiao H, Chen X (2004) ΔNp73β is active in transactivation and growth suppression. Mol Cell Biol 24:487–501. doi:10.1128/MCB.24.2.487-501.2004

    Article  CAS  PubMed  Google Scholar 

  31. Goldschneider D, Million K, Meiller A, Haddada H, Puisieux A, Benard J, May E, Douc-Rasy S (2005) The neurogene BTG2TIS21/PC3 is transactivated by ΔNp73α via p53 specifically in neuroblastoma cells. J Cell Sci 118:1245–1253. doi:10.1242/jcs.01704

    Article  CAS  PubMed  Google Scholar 

  32. Melino G, Lu X, Gasco M, Crook T, Knight RA (2003) Functional regulation of p73 and p63: development and cancer. Trends Biochem Sci 28:663–670

    Article  CAS  PubMed  Google Scholar 

  33. Scaruffi P, Casciano I, Masiero L, Basso G, Romani M, Tonini GP (2000) Lack of p73 expression in mature B-ALL and identification of three new splicing variants restricted to pre B and C-ALL indicate a role of p73 in B cell ALL differentiation. Leukemia 14:518–519

    Article  CAS  PubMed  Google Scholar 

  34. Yu J, Baron V, Mercola D, Mustelin T, Adamson ED (2007) A network of p73, p53 and Egr1 is required for efficient apoptosis in tumor cells. Cell Death Differ 14:436–446. doi:10.1038/sj.cdd.4402029

    Article  CAS  PubMed  Google Scholar 

  35. Lanza M, Marinari B, Papoutsaki M, Giustizieri ML, D’Alessandra Y, Chimenti S, Guerrini L, Costanzo A (2006) Cross-talks in the p53 family: ΔNp63 is an anti-apoptotic target for ΔNp73α and p53 gain-of-function mutants. Cell Cycle 5:1996–2004

    CAS  PubMed  Google Scholar 

  36. Sugrue MM, Shin DY, Lee SW, Aaronson SA (1997) Wild-type p53 triggers a rapid senescence program in human tumor cells lacking functional p53. Proc Natl Acad Sci USA 94:9648–9653

    Article  CAS  PubMed  Google Scholar 

  37. Moyano JV, Evans JR, Chen F et al (2006) αB-crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. J Clin Invest 116:261–270. doi:10.1172/JCI25888

    Article  CAS  PubMed  Google Scholar 

  38. Pear WS, Nolan GP, Scott ML, Baltimore D (1993) Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci USA 90:8392–8396

    Article  CAS  PubMed  Google Scholar 

  39. Leong CO, Vidnovic N, DeYoung MP, Sgroi D, Ellisen LW (2007) The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J Clin Invest 117:1370–1380. doi:10.1172/JCI30866

    Article  CAS  PubMed  Google Scholar 

  40. Rocco JW, Leong CO, Kuperwasser N, DeYoung MP, Ellisen LW (2006) p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 9:45–56. doi:10.1016/j.ccr.2005.12.013

    Article  CAS  PubMed  Google Scholar 

  41. Doerwald L, van Rheede T, Dirks RP et al (2004) Sequence and functional conservation of the intergenic region between the head-to-head genes encoding the small heat shock proteins αB-crystallin and HspB2 in the mammalian lineage. J Mol Evol 59:674–686. doi:10.1007/s00239-004-2659-y

    Article  CAS  PubMed  Google Scholar 

  42. Swamynathan SK, Piatigorsky J (2002) Orientation-dependent influence of an intergenic enhancer on the promoter activity of the divergently transcribed mouse Shsp/αB-crystallin and Mkbp/HspB2 genes. J Biol Chem 277:49700–49706. doi:10.1074/jbc.M209700200

    Article  CAS  PubMed  Google Scholar 

  43. el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B (1992) Definition of a consensus binding site for p53. Nat Genet 1:45–49. doi:10.1038/ng0492-45

    Article  CAS  PubMed  Google Scholar 

  44. Funk WD, Pak DT, Karas RH, Wright WE, Shay JW (1992) A transcriptionally active DNA-binding site for human p53 protein complexes. Mol Cell Biol 12:2866–2871

    CAS  PubMed  Google Scholar 

  45. Kartasheva NN, Contente A, Lenz-Stoppler C, Roth J, Dobbelstein M (2002) p53 induces the expression of its antagonist p73 ΔN, establishing an autoregulatory feedback loop. Oncogene 21:4715–4727. doi:10.1038/sj.onc.1205584

    Article  CAS  PubMed  Google Scholar 

  46. Vossio S, Palescandolo E, Pediconi N, Moretti F, Balsano C, Levrero M, Costanzo A (2002) ΔN-p73 is activated after DNA damage in a p53-dependent manner to regulate p53-induced cell cycle arrest. Oncogene 21:3796–3803. doi:10.1038/sj/onc/1205465

    Article  CAS  PubMed  Google Scholar 

  47. Zaika AI, Slade N, Erster SH, Sansome C, Joseph TW, Pearl M, Chalas E, Moll UM (2002) ΔNp73, a dominant-negative inhibitor of wild-type p53 and TAp73, is up-regulated in human tumors. J Exp Med 196:765–780. doi:10.1084/jem.20020179

    Article  CAS  PubMed  Google Scholar 

  48. Tanaka Y, Kameoka M, Itaya A, Ota K, Yoshihara K (2004) Regulation of HSF1-responsive gene expression by N-terminal truncated form of p73α. Biochem Biophys Res Commun 317:865–872. doi:10.1016/j.bbrc.2004.03.124

    Article  CAS  PubMed  Google Scholar 

  49. Nakagawa T, Takahashi M, Ozaki T, Watanabe Ki K, Todo S, Mizuguchi H, Hayakawa T, Nakagawara A (2002) Autoinhibitory regulation of p73 by ΔNp73 to modulate cell survival and death through a p73-specific target element within the ΔNp73 promoter. Mol Cell Biol 22:2575–2585. doi:10.1128/MCB.22.8.2575-2585.2002

    Article  CAS  PubMed  Google Scholar 

  50. Han JA, Kim JI, Ongusaha PP, Hwang DH, Ballou LR, Mahale A, Aaronson SA, Lee SW (2002) P53-mediated induction of Cox-2 counteracts p53- or genotoxic stress-induced apoptosis. EMBO J 21:5635–5644. doi:10.1093/emboj/cdf591

    Article  CAS  PubMed  Google Scholar 

  51. Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM (2004) Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304:596–600. doi:10.1126/science.1095569

    Article  CAS  PubMed  Google Scholar 

  52. Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126:107–120. doi:10.1016/j.cell.2006.05.036

    Article  CAS  PubMed  Google Scholar 

  53. Tan M, Li S, Swaroop M, Guan K, Oberley LW, Sun Y (1999) Transcriptional activation of the human glutathione peroxidase promoter by p53. J Biol Chem 274:12061–12066

    Article  CAS  PubMed  Google Scholar 

  54. Yoon KA, Nakamura Y, Arakawa H (2004) Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. J Hum Genet 49:134–140. doi:10.1007/s10038-003-0122-3

    Article  CAS  PubMed  Google Scholar 

  55. Ongusaha PP, Kim JI, Fang L, Wong TW, Yancopoulos GD, Aaronson SA, Lee SW (2003) p53 induction and activation of DDR1 kinase counteract p53-mediated apoptosis and influence p53 regulation through a positive feedback loop. EMBO J 22:1289–1301. doi:10.1093/emboj/cdg129

    Article  CAS  PubMed  Google Scholar 

  56. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11:1306–1313. doi:10.1038/nm1320

    Article  CAS  PubMed  Google Scholar 

  57. Liu S, Li J, Tao Y, Xiao X (2007) Small heat shock protein αB-crystallin binds to p53 to sequester its translocation to mitochondria during hydrogen peroxide-induced apoptosis. Biochem Biophys Res Commun 354:109–114. doi:10.1016/j.bbrc.2006.12.152

    Article  CAS  PubMed  Google Scholar 

  58. Ivanov O, Chen F, Wiley EL et al (2008) αB-crystallin is a novel predictor of resistance to neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat 111:411–417. doi:10.1007/s10549-007-9796-0

    Article  CAS  PubMed  Google Scholar 

  59. Chelouche-Lev D, Kluger HM, Berger AJ, Rimm DL, Price JE (2004) αB-crystallin as a marker of lymph node involvement in breast carcinoma. Cancer 100:2543–2548. doi:10.1002/cncr.20304

    Article  CAS  PubMed  Google Scholar 

  60. Chin D, Boyle GM, Williams RM et al (2005) αB-crystallin, a new independent marker for poor prognosis in head and neck cancer. Laryngoscope 115:1239–1242. doi:10.1097/01.MLG.0000164715.86240.55

    Article  CAS  PubMed  Google Scholar 

  61. Tang Q, Liu YF, Zhu XJ, Li YH, Zhu J, Zhang JP, Feng ZQ, Guan XH (2009) Expression and prognostic significance of the αB-crystallin gene in human hepatocellular carcinoma. Hum Pathol 40:300–305. doi:10.1016/j.humpath.2008.09.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Dr. Sam Lee (Harvard Medical School) for providing the EJ-p53 cells and Dr. Xinbin Chen (University of California-Davis) for providing p73 plasmids and advice. These studies were supported by NIH grants R01CA097198 (VLC), R21CA125181 (VLC), T32CA09560 (JRE), and by the Breast Cancer Research Foundation (VLC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent L. Cryns.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 198 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, J.R., Bosman, J.D., Brown-Endres, L. et al. Induction of the small heat shock protein αB-crystallin by genotoxic stress is mediated by p53 and p73. Breast Cancer Res Treat 122, 159–168 (2010). https://doi.org/10.1007/s10549-009-0542-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0542-7

Keywords

Navigation