Skip to main content

Advertisement

Log in

Telomere length in blood cells and breast cancer risk: investigations in two case–control studies

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Telomere dysfunction, which leads to genomic instability, is hypothesized to play a causal role in the development of breast cancer. However, the few epidemiologic studies that assessed the relationship between telomere length in blood cells and breast cancer risk have been inconsistent. We conducted two case–control studies to further understand the role of telomere length and breast cancer risk. Overall telomere lengths were measured by telomere quantitative fluorescent in situ hybridization (TQ-FISH) and telomere quantitative real-time PCR (TQ-PCR). The associations between telomere length in blood leukocytes and risk of breast cancer were examined in two breast cancer case–control studies that were conducted at Roswell Park Cancer Institute (RPCI) and Lombardi Comprehensive Cancer Center (LCCC). Using the 50th percentile value in controls as a cut point, women who had shorter telomere length were not at significantly increased risk of breast cancer compared with women who had longer telomere length in the RPCI study (odds ratio [OR] = 1.34, 95% confidence interval [CI] = 0.84–2.12), in the LCCC study (OR = 1.18, 95% CI = 0.73–1.91), or in the combined RPCI and LCCC studies (OR = 1.23, 95% CI = 0.89–1.71). There was no significant dose–response relationship across quartiles of telomere length and no significant difference when comparing women in the lowest to highest quartile of telomere length. Overall telomere length in blood leukocytes was not significantly associated with the risk of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Gray JW, Collins C (2000) Genome changes and gene expression in human solid tumors. Carcinogenesis 21:443–452

    Article  CAS  PubMed  Google Scholar 

  2. Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34

    Article  CAS  PubMed  Google Scholar 

  3. van Heek NT, Meeker AK, Kern SE, Yeo CJ, Lillemoe KD, Cameron JL, Offerhaus GJ, Hicks JL, Wilentz RE, Goggins MG, De Marzo AM, Hruban RH, Maitra A (2002) Telomere shortening is nearly universal in pancreatic intraepithelial neoplasia. Am J Pathol 161:1541–1547

    PubMed  Google Scholar 

  4. Meeker AK, Hicks JL, Platz EA, March GE, Bennett CJ, Delannoy MJ, De Marzo AM (2002) Telomere shortening is an early somatic DNA alteration in human prostate tumorigenesis. Cancer Res 62:6405–6409

    CAS  PubMed  Google Scholar 

  5. Meeker AK, Hicks JL, Gabrielson E, Strauss WM, De Marzo AM, Argani P (2004) Telomere shortening occurs in subsets of normal breast epithelium as well as in situ and invasive carcinoma. Am J Pathol 164:925–935

    PubMed  Google Scholar 

  6. Engelhardt M, Drullinsky P, Guillem J, Moore MA (1997) Telomerase and telomere length in the development and progression of premalignant lesions to colorectal cancer. Clin Cancer Res 3:1931–1941

    CAS  PubMed  Google Scholar 

  7. Kinouchi Y, Hiwatashi N, Chida M, Nagashima F, Takagi S, Maekawa H, Toyota T (1998) Telomere shortening in the colonic mucosa of patients with ulcerative colitis. J Gastroenterol 33:343–348

    Article  CAS  PubMed  Google Scholar 

  8. O’Sullivan JN, Bronner MP, Brentnall TA, Finley JC, Shen WT, Emerson S, Emond MJ, Gollahon KA, Moskovitz AH, Crispin DA, Potter JD, Rabinovitch PS (2002) Chromosomal instability in ulcerative colitis is related to telomere shortening. Nat Genet 32:280–284

    Article  PubMed  CAS  Google Scholar 

  9. McGrath M, Wong JY, Michaud D, Hunter DJ, De Vivo I (2007) Telomere length, cigarette smoking, and bladder cancer risk in men and women. Cancer Epidemiol Biomarkers Prev 16:815–819

    Article  CAS  PubMed  Google Scholar 

  10. Wu X, Amos CI, Zhu Y, Zhao H, Grossman BH, Shay JW, Luo S, Hong WK, Spitz MR (2003) Telomere dysfunction: a potential cancer predisposition factor. J Natl Cancer Inst 95:1211–1218

    Article  CAS  PubMed  Google Scholar 

  11. Broberg K, Bjork J, Paulsson K, Hoglund M, Albin M (2005) Constitutional short telomeres are strong genetic susceptibility markers for bladder cancer. Carcinogenesis 26:1236–1271

    Google Scholar 

  12. Shen J, Terry MB, Gurvich I, Liao Y, Senie RT, Santella RM (2007) Short telomere length and breast cancer risk: a study in sister sets. Cancer Res 67:5538–5544

    Article  CAS  PubMed  Google Scholar 

  13. Svenson U, Nordfjall K, Stegmayr B, Manjer J, Nilsson P, Tavelin B, Henriksson R, Lenner P, Roos G (2008) Breast cancer survival is associated with telomere length in peripheral blood cells. Cancer Res 68:3618–3623

    Article  CAS  PubMed  Google Scholar 

  14. Barwell J, Pangon L, Georgiou A, Docherty Z, Kesterton I, Ball J, Camplejohn R, Berg J, Aviv A, Gardner J, Kato BS, Carter N, Paximadas D, Spector TD, Hodgson S (2007) Is telomere length in peripheral blood lymphocytes correlated with cancer susceptibility or radiosensitivity? Br J Cancer 97:1696–1700

    Article  CAS  PubMed  Google Scholar 

  15. De Vivo I, Prescott J, Wong JY, Kraft P, Hankinson SE, Hunter DJ (2009) A prospective study of relative telomere length and postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev 18:1152–1156

    Article  PubMed  CAS  Google Scholar 

  16. Ambrosone CB, Nesline MK, Davis W (2006) Establishing a cancer center data bank and biorepository for multidisciplinary research. Cancer Epidemiol Biomarkers Prev 15:1575–1577

    Article  PubMed  Google Scholar 

  17. Cawthon RM (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res 30:e47

    Article  PubMed  Google Scholar 

  18. Slijepcevic P (2001) Telomere length measurement by Q-FISH. Methods Cell Sci 23:17–22

    Article  CAS  PubMed  Google Scholar 

  19. Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA (2003) Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361:393–395

    Article  CAS  PubMed  Google Scholar 

  20. Finley JC, Reid BJ, Odze RD, Sanchez CA, Galipeau P, Li X, Self SG, Gollahon KA, Blount PL, Rabinovitch PS (2006) Chromosomal instability in Barrett’s esophagus is related to telomere shortening. Cancer Epidemiol Biomarkers Prev 15:1451–1457

    Article  CAS  PubMed  Google Scholar 

  21. Leach NT, Rehder C, Jensen K, Holt S, Jackson-Cook C (2004) Human chromosomes with shorter telomeres and large heterochromatin regions have a higher frequency of acquired somatic cell aneuploidy. Mech Ageing Dev 125:563–573

    Article  CAS  PubMed  Google Scholar 

  22. Vera E, Canela A, Fraga MF, Esteller M, Blasco MA (2008) Epigenetic regulation of telomeres in human cancer. Oncogene 27:6817–6833

    Article  CAS  PubMed  Google Scholar 

  23. Higuchi R, Fockler C, Dollinger G, Watson R (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology 11:1026–1030

    Article  CAS  PubMed  Google Scholar 

  24. Zheng YL, Loffredo CA, Alberg AJ, Yu Z, Jones RT, Perlmutter D, Enewold L, Krasna MJ, Yung R, Shields PG, Harris CC (2005) Less efficient g2-m checkpoint is associated with an increased risk of lung cancer in African Americans. Cancer Res 65:9566–9573

    Article  CAS  PubMed  Google Scholar 

  25. Bailey SM, Murnane JP (2006) Telomeres, chromosome instability and cancer. Nucleic Acids Res 34:2408–2417

    Article  CAS  PubMed  Google Scholar 

  26. Charames GS, Bapat B (2003) Genomic instability and cancer. Curr Mol Med 3:589–596

    Article  CAS  PubMed  Google Scholar 

  27. Jang JS, Choi YY, Lee WK, Choi JE, Cha SI, Kim YJ, Kim CH, Kam S, Jung TH, Park JY (2008) Telomere length and the risk of lung cancer. Cancer Sci 99:1385–1389

    Article  CAS  PubMed  Google Scholar 

  28. Hemann MT, Strong MA, Hao LY, Greider CW (2001) The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107:67–77

    Article  CAS  PubMed  Google Scholar 

  29. Lansdorp PM, Verwoerd NP, van de Rijke FM, Dragowska V, Little MT, Dirks RW, Raap AK, Tanke HJ (1996) Heterogeneity in telomere length of human chromosomes. Hum Mol Genet 5:685–691

    Article  CAS  PubMed  Google Scholar 

  30. Graakjaer J, Bischoff C, Korsholm L, Holstebroe S, Vach W, Bohr VA, Christensen K, Kolvraa S (2003) The pattern of chromosome-specific variations in telomere length in humans is determined by inherited, telomere-near factors and is maintained throughout life. Mech Ageing Dev 124:629–640

    Article  CAS  PubMed  Google Scholar 

  31. Martens UM, Zijlmans JM, Poon SS, Dragowska W, Yui J, Chavez EA, Ward RK, Lansdorp PM (1998) Short telomeres on human chromosome 17p. Nat Genet 18:76–80

    CAS  PubMed  Google Scholar 

  32. Der-Sarkissian H, Bacchetti S, Cazes L, Londono-Vallejo JA (2004) The shortest telomeres drive karyotype evolution in transformed cells. Oncogene 23:1221–1228

    Article  CAS  PubMed  Google Scholar 

  33. Baudis M (2007) Genomic imbalances in 5918 malignant epithelial tumors: an explorative meta-analysis of chromosomal CGH data. BMC Cancer 7:226

    Article  PubMed  CAS  Google Scholar 

  34. Gorgoulis VG, Koutroumbi EN, Kotsinas A, Zacharatos P, Markopoulos C, Giannikos L, Kyriakou V, Voulgaris Z, Gogas I, Kittas C (1998) Alterations of p16-pRb pathway and chromosome locus 9p21–22 in sporadic invasive breast carcinomas. Mol Med 4:807–822

    CAS  PubMed  Google Scholar 

  35. An HX, Niederacher D, Picard F, van XXX RC, Bender HG, Beckmann MW (1996) Frequent allele loss on 9p21–22 defines a smallest common region in the vicinity of the CDKN2 gene in sporadic breast cancer. Genes Chromosomes Cancer 17:14–20

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Katherine Meeker, Kenshata Watkins, Whitney Mcleod, and Christine Nagel for their assistance in study subject recruitment; Dingfeng Han for performing TQ-PCR for telomere length measurement; and Lenka Goldman for data preparation. We are indebted to the physicians of the Betty Lou Ourisman Breast Center of the LCCC and the physicians in the department of surgical oncology of the RPCI for their strong support of patient recruitment. We thank Dr. Alan Meeker of Johns Hopkins University for providing Telometer software and Dr. Richard Cawthon of University of Utah for sharing their latest real-time telomere PCR protocol. The Clinical Molecular Epidemiology Shared Resource at the LCCC provided services for questionnaire data entry for the LCCC study. This work was supported by Susan G. Komen for the Cure (BCTR 0600562 to Y.L.Z); the National Institutes of Health cancer center support grant (P30 CA51008 to LCCC and P30 CA016056 to RPCI) and DOD grant (DAMD17-03-1-0446) supports the control recruitment for the LCCC study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Ling Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, YL., Ambrosone, C., Byrne, C. et al. Telomere length in blood cells and breast cancer risk: investigations in two case–control studies. Breast Cancer Res Treat 120, 769–775 (2010). https://doi.org/10.1007/s10549-009-0440-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0440-z

Keywords

Navigation