Abstract
The glycolytic phenotype is a widespread phenomenon in solid cancer forms, including breast cancer. Dichloroacetate (DCA) has recently been proposed as a novel and relatively non-toxic anti-cancer agent that can reverse the glycolytic phenotype in cancer cells through the inhibition of pyruvate dehydrogenase kinase. We have examined the effect of DCA against breast cancer cells, including in a highly metastatic in vivo model. The growth of several breast cancer cell lines was found to be inhibited by DCA in vitro. Further examination of 13762 MAT rat mammary adenocarcinoma cells found that reversal of the glycolytic phenotype by DCA correlated with the inhibition of proliferation without any increase in cell death. This was despite a small but significant increase in caspase 3/7 activity, which may sensitize cancer cells to other apoptotic triggers. In vivo, DCA caused a 58% reduction in the number of lung metastases observed macroscopically after injection of 13762 MAT cells into the tail vein of rats (P = 0.0001, n ≥ 9 per group). These results demonstrate that DCA has anti-proliferative properties in addition to pro-apoptotic properties, and can be effective against highly metastatic disease in vivo, highlighting its potential for clinical use.
References
Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH—a expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9:425–434
Gatenby R, Gillies RJ (2007) Glycolysis in cancer: a potential target for therapy. Int J Biochem Cell Biol 39:1358–1366
Isidoro A, Martnez M, Fernndez PL, Ortega AD, Santamara G, Chamorro M, Reed JC, Cuezva JM (2004) Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer. Biochem J 378:17–20
Isidoro A, Casado E, Redondo A, Acebo P, Espinosa E, Alonso AM, Cejas P, Hardisson D, Fresno Vara JA, Belda-Iniesta C, Gonzlez-Barn M, Cuezva JM (2005) Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis. Carcinogenesis 26:2095–2104
Robey IF, Lien AD, Welsh SJ, Baggett BK, Gillies RJ (2005) Hypoxia-inducible factor-1α and the glycolytic phenotype in tumors. Neoplasia 7:324–330
Gatenby RA, Smallbone K, Maini PK, Rose F, Averill J, Nagle RB, Worrall L, Gillies RJ (2007) Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. Br J Cancer 97:646–653
Gudi R, Bowker-Kinley MM, Kedishvili NY, Zhao Y, Popov KM (1995) Diversity of the pyruvate dehydrogenase kinase gene family in humans. J Biol Chem 270:28989–28994
Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51
Wong JY, Huggins GS, Debidda M, Munshi NC, Vivo ID (2008) Dichloroacetate induces apoptosis in endometrial cancer cells. Gynecol Oncol 109:394–402
Kaufmann P, Engelstad K, Wei Y, Jhung S, Sano MC, Shungu DC, Millar WS, Hong X, Gooch CL, Mao X, Pascual JM, Hirano M, Stacpoole PW, DiMauro S, Vivo DCD (2006) Dichloroacetate causes toxic neuropathy in MELAS: a randomized, controlled clinical trial. Neurology 66:324–330
Stacpoole PW, Kerr DS, Barnes C, Bunch ST, Carney PR, Fennell EM, Felitsyn NM, Gilmore RL, Greer M, Henderson GN, Hutson AD, Neiberger RE, O’Brien RG, Perkins LA, Quisling RG, Shroads AL, Shuster JJ, Silverstein JH, Theriaque DW, Valenstein E (2006) Controlled clinical trial of dichloroacetate for treatment of congenital lactic acidosis in children. Pediatrics 117:1519–1531
Pearson H (2007) Cancer patients opt for unapproved drug. Nature 446:474–475
Parish CR, Freeman C, Brown KJ, Francis DJ, Cowden WB (1999) Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res 59:3433–3441
Blackburn AC, McLary SC, Naeem R, Luszcz J, Stockton DW, Donehower LA, Mohammed M, Mailhes JB, Soferr T, Naber SP, Otis CN, Jerry DJ (2004) Loss of heterozygosity occurs via mitotic recombination in Trp53+/− mice and associates with mammary tumor susceptibility of the BALB/c strain. Cancer Res 64:5140–5147
Schmuck E, Cappello J, Coggan M, Brew J, Cavanaugh JA, Blackburn AC, Baker RT, Eyre HJ, Sutherland GR, Board PG (2008) Deletion of Glu155 causes a deficiency of glutathione transferase Omega 1-1 but does not alter sensitivity to arsenic trioxide and other cytotoxic drugs. Int J Biochem Cell Biol 40:2553–2559
Quah BJ, Warren HS, Parish CR (2007) Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat Protoc 2:2049–2056
Beutler E (1975) Red cell metabolism: a manual of biochemical methods, 2nd edn. Grune & Stratton Inc., New York
Saghir SA, Schultz IR (2002) Low-dose pharmacokinetics and oral bioavailability of dichloroacetate in naive and GST-zeta-depleted rats. Environ Health Perspect 110:757–763
Gonzalez-Leon A, Schultz IR, Xu G, Bull RJ (1997) Pharmacokinetics and metabolism of dichloroacetate in the F344 rat after prior administration in drinking water. Toxicol Appl Pharmacol 146:189–195
Board PG, Anders MW (2005) Human glutathione transferase zeta. Methods Enzymol 401:61–77
Lim CEL, Matthaei KI, Blackburn AC, Davis RP, Dahlstrom JE, Koina ME, Anders MW, Board PG (2004) Mice deficient in glutathione transferase zeta/maleylacetoacetate isomerase exhibit a range of pathological changes and elevated expression of alpha, mu and pi class glutathione transferases. Am J Pathol 165:679–693
Cao W, Yacoub S, Shiverick KT, Namiki K, Sakai Y, Porvasnik S, Urbanek C, Rosser CJ (2008) Dichloroacetate (DCA) sensitizes both wild-type and over expressing Bcl-2 prostate cancer cells in vitro to radiation. Prostate 68:1223–1231
Bowker-Kinley MM, Davis WI, Wu P, Harris RA, Popov KM (1998) Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J 329:191–196
Lu CW, Lin SC, Chen KF, Lai YY, Tsai SJ (2008) Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J Biol Chem 283:28106–28114
DiPietrantonio AM, Hsieh T, Wu JM (1999) Activation of caspase 3 in HL-60 cells exposed to hydrogen peroxide. Biochem Biophys Res Commun 255:477–482
Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, Renner K, Timischl B, Mackensen A, Kunz-Schughart L, Andreesen R, Krause SW, Kreutz M (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109:3812–3819
Mori M, Yamagata T, Goto T, Saito S, Momoi MY (2004) Dichloroacetate treatment for mitochondrial cytopathy: long-term effects in MELAS. Brain Dev 26:453–458
Shangraw RE, Lohan-Mannion D, Hayes A, Moriarty RM, Fu R, Robinson ST (2008) Dichloroacetate stabilizes the intraoperative acid-base balance during liver transplantation. Liver Transpl 14:989–998
Stacpoole PW, Gilbert LR, Neiberger RE, Carney PR, Valenstein E, Theriaque DW, Shuster JJ (2008) Evaluation of long-term treatment of children with congenital lactic acidosis with dichloroacetate. Pediatrics 121:e1223–e1228
Theodoratos A, Tu WJ, Cappello J, Blackburn AC, Matthaei K, Board PG (2009) Phenylalanine-induced leucopenia in genetic and dichloroacetic acid generated deficiency of glutathione transferase zeta. Biochem Pharmacol 77:1358–1363
Mayers RM, Leighton B, Kilgour E (2005) PDH kinase inhibitors: a novel therapy for Type II diabetes? Biochem Soc Trans 33:367–370
Acknowledgments
This research was supported by a grant from the National Breast Cancer Foundation Australia, and by NHMRC 366787 R.D. Wright Career Development Award.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sun, R.C., Fadia, M., Dahlstrom, J.E. et al. Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo. Breast Cancer Res Treat 120, 253–260 (2010). https://doi.org/10.1007/s10549-009-0435-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10549-009-0435-9