Skip to main content

Advertisement

Log in

Interactions between the estrogen receptor, its cofactors and microRNAs in breast cancer

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The activity of selective estrogen receptor modulators (SERMs) is not fully explained by an estrogen receptor (ER) switch model that simply turns estrogen activity on or off. A better understanding of the mechanisms involved in estrogen signaling and the development of drug resistance could help stratify patients into more coherent treatment groups and identify novel therapeutic candidates. This review describes how interactions between two novel factors known to influence estrogenic activity: nuclear receptor cofactors—protein partners which modulate estrogen action, and microRNAs—a class of recently discovered regulatory elements, may impact hormone-sensitive breast cancer. The role of nuclear receptor cofactors in estrogen signaling and the associations between ER cofactors and breast cancer are described. We outline the activity of microRNAs (miRNAs) and their associations with breast cancer and detail recent evidence of interactions between the ER and its cofactors and miRNA and provide an overview of the emerging field of miRNA-based therapeutics. We propose that previously unrecognised interactions between these two species of regulatory molecules may underlie at least some of the heterogeneity of breast cancer in terms of its clinical course and response to treatment. The exploitation of such associations will have important implications for drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. W.H.O. (2006) Fact Sheet No.297. In: World Health Organisation

  2. Conneely OM, Jericevic BM, Lydon JP (2003) Progesterone receptors in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia 8(2):205–214. doi:10.1023/A:1025952924864

    Article  PubMed  Google Scholar 

  3. Dickson RB, Stancel GM (2000) Estrogen receptor-mediated processes in normal and cancer cells. J Natl Cancer Inst Monogr 27:135–145

    PubMed  CAS  Google Scholar 

  4. Howell A, Osborne CK, Morris C, Wakeling AE (2000) ICI 182, 780 (Faslodex): development of a novel, “pure” antiestrogen. Cancer 89(4):817–825. doi:10.1002/1097-0142(20000815)89:4<817::AID-CNCR14>3.0.CO;2-6

    Article  PubMed  CAS  Google Scholar 

  5. Lonard DM, O’Malley BW (2006) The expanding cosmos of nuclear receptor coactivators. Cell 125(3):411–414. doi:10.1016/j.cell.2006.04.021

    Article  PubMed  CAS  Google Scholar 

  6. O’Malley BW (2007) Coregulators: from whence came these “master genes”. Mol Endocrinol 21(5):1009–1013. doi:10.1210/me.2007-0012

    Article  PubMed  CAS  Google Scholar 

  7. Perissi V, Rosenfeld MG (2005) Controlling nuclear receptors: the circular logic of cofactor cycles. Nat Rev Mol Cell Biol 6(7):542–554. doi:10.1038/nrm1680

    Article  PubMed  CAS  Google Scholar 

  8. Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14(2):121–141

    PubMed  CAS  Google Scholar 

  9. Perissi V, Aggarwal A, Glass CK, Rose DW, Rosenfeld MG (2004) A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 116(4):511–526. doi:10.1016/S0092-8674(04)00133-3

    Article  PubMed  CAS  Google Scholar 

  10. Privalsky ML (2004) The role of corepressors in transcriptional regulation by nuclear hormone receptors. Annu Rev Physiol 66:315–360. doi:10.1146/annurev.physiol.66.032802.155556

    Article  PubMed  CAS  Google Scholar 

  11. Freiman RN, Tjian R (2003) Regulating the regulators: lysine modifications make their mark. Cell 112(1):11–17. doi:10.1016/S0092-8674(02)01278-3

    Article  PubMed  CAS  Google Scholar 

  12. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080. doi:10.1126/science.1063127

    Article  PubMed  CAS  Google Scholar 

  13. Tsai CC, Fondell JD (2004) Nuclear receptor recruitment of histone-modifying enzymes to target gene promoters. Vitam Horm 68:93–122. doi:10.1016/S0083-6729(04)68003-4

    Article  PubMed  CAS  Google Scholar 

  14. Stallcup MR, Kim JH, Teyssier C, Lee YH, Ma H, Chen D (2003) The roles of protein-protein interactions and protein methylation in transcriptional activation by nuclear receptors and their coactivators. J Steroid Biochem Mol Biol 85(2–5):139–145. doi:10.1016/S0960-0760(03)00222-X

    Article  PubMed  CAS  Google Scholar 

  15. Lonard DM, Lanz RB, O’Malley BW (2007) Nuclear receptor coregulators and human disease. Endocr Rev 28(5):575–587. doi:10.1210/er.2007-0012

    Article  PubMed  CAS  Google Scholar 

  16. Hu X, Lazar MA (2000) Transcriptional repression by nuclear hormone receptors. Trends endocrinol metab: TEM 11(1):6–10

    Article  PubMed  CAS  Google Scholar 

  17. Jepsen K, Rosenfeld MG (2002) Biological roles and mechanistic actions of co-repressor complexes. J Cell Sci 115(Pt 4):689–698

    PubMed  CAS  Google Scholar 

  18. Urnov FD, Wolffe AP, Guschin D (2001) Molecular mechanisms of corepressor function. Curr Top Microbiol Immunol 254:1–33

    PubMed  CAS  Google Scholar 

  19. Ordentlich P, Downes M, Evans RM (2001) Corepressors and nuclear hormone receptor function. Curr Top Microbiol Immunol 254:101–116

    PubMed  CAS  Google Scholar 

  20. Goodson M, Jonas BA, Privalsky MA (2005) Corepressors: custom tailoring and alterations while you wait. Nucl recept signal 3:e003

    Article  PubMed  CAS  Google Scholar 

  21. Lazar MA (2003) Nuclear receptor corepressors. Nucl recept signal 1:e001

    Article  PubMed  CAS  Google Scholar 

  22. den Hollander P, Rayala SK, Coverley D, Kumar R (2006) Ciz1, a novel DNA-binding coactivator of the estrogen receptor alpha, confers hypersensitivity to estrogen action. Cancer Res 66(22):11021–11029. doi:10.1158/0008-5472.CAN-06-2336

    Article  CAS  Google Scholar 

  23. Klinge CM (2000) Estrogen receptor interaction with co-activators and co-repressors. Steroids 65(5):227–251. doi:10.1016/S0039-128X(99)00107-5

    Article  PubMed  CAS  Google Scholar 

  24. Onate SA, Tsai SY, Tsai MJ, O’Malley BW (1995) Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270(5240):1354–1357. doi:10.1126/science.270.5240.1354

    Article  PubMed  CAS  Google Scholar 

  25. Yan J, Tsai SY, Tsai MJ (2006) SRC-3/AIB1: transcriptional coactivator in oncogenesis. Acta Pharmacol Sin 27(4):387–394. doi:10.1111/j.1745-7254.2006.00315.x

    Article  PubMed  CAS  Google Scholar 

  26. Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY, Sauter G, Kallioniemi OP, Trent JM, Meltzer PS (1997) AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277(5328):965–968. doi:10.1126/science.277.5328.965

    Article  PubMed  CAS  Google Scholar 

  27. Torres-Arzayus MI, Font de Mora J, Yuan J, Vazquez F, Bronson R, Rue M, Sellers WR, Brown M (2004) High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene. Cancer Cell 6(3):263–274. doi:10.1016/j.ccr.2004.06.027

    Article  PubMed  CAS  Google Scholar 

  28. Wu RC, Qin J, Yi P, Wong J, Tsai SY, Tsai MJ, O’Malley BW (2004) Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic responses to multiple cellular signaling pathways. Mol Cell 15(6):937–949. doi:10.1016/j.molcel.2004.08.019

    Article  PubMed  CAS  Google Scholar 

  29. List HJ, Reiter R, Singh B, Wellstein A, Riegel AT (2001) Expression of the nuclear coactivator AIB1 in normal and malignant breast tissue. Breast Cancer Res Treat 68(1):21–28. doi:10.1023/A:1017910924390

    Article  PubMed  CAS  Google Scholar 

  30. Bautista S, Valles H, Walker RL, Anzick S, Zeillinger R, Meltzer P, Theillet C (1998) In breast cancer, amplification of the steroid receptor coactivator gene AIB1 is correlated with estrogen and progesterone receptor positivity. Clin Cancer Res 4(12):2925–2929

    PubMed  CAS  Google Scholar 

  31. Zhu Y, Qi C, Jain S, Le Beau MM, Espinosa R 3rd, Atkins GB, Lazar MA, Yeldandi AV, Rao MS, Reddy JK (1999) Amplification and overexpression of peroxisome proliferator-activated receptor binding protein (PBP/PPARBP) gene in breast cancer. Proc Natl Acad Sci USA 96(19):10848–10853. doi:10.1073/pnas.96.19.10848

    Article  PubMed  CAS  Google Scholar 

  32. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science (New York, NY) 235(4785):177–182

    CAS  Google Scholar 

  33. Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua SA, Wong J, Allred DC, Clark GM, Schiff R (2003) Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst 95(5):353–361

    PubMed  CAS  Google Scholar 

  34. Font de Mora J, Brown M (2000) AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor. Mol Cell Biol 20(14):5041–5047. doi:10.1128/MCB.20.14.5041-5047.2000

    Article  PubMed  CAS  Google Scholar 

  35. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. doi:10.1038/35021093

    Article  PubMed  CAS  Google Scholar 

  36. Sorlie T (2004) Molecular portraits of breast cancer: tumour subtypes as distinct disease entities. Eur J Cancer 40(18):2667–2675. doi:10.1016/j.ejca.2004.08.021

    Article  PubMed  CAS  Google Scholar 

  37. Adams BD, Furneaux H, White BA (2007) The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol 21(5):1132–1147. doi:10.1210/me.2007-0022

    Article  PubMed  CAS  Google Scholar 

  38. Jordan VC (1993) Fourteenth Gaddum memorial lecture. A current view of tamoxifen for the treatment and prevention of breast cancer. Br J Pharmacol 110(2):507–517

    PubMed  CAS  Google Scholar 

  39. EBCTCG (1998) Tamoxifen for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists’ Collaborative Group. Lancet 351(9114):1451–1467. doi:10.1016/S0140-6736(97)11423-4

    Article  Google Scholar 

  40. EBCTCG (1992) Systemic treatment of early breast cancer by hormonal, cytotoxic, or immune therapy. 133 randomised trials involving 31,000 recurrences and 24,000 deaths among 75,000 women. Early Breast Cancer Trialists’ Collaborative Group. Lancet 339(8785):71–85

    Google Scholar 

  41. Osborne CK (1998) Tamoxifen in the treatment of breast cancer. N Engl J Med 339(22):1609–1618. doi:10.1056/NEJM199811263392207

    Article  PubMed  CAS  Google Scholar 

  42. Desta Z, Ward BA, Soukhova NV, Flockhart DA (2004) Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther 310(3):1062–1075. doi:10.1124/jpet.104.065607

    Article  PubMed  CAS  Google Scholar 

  43. Wang DY, Fulthorpe R, Liss SN, Edwards EA (2004) Identification of estrogen-responsive genes by complementary deoxyribonucleic acid microarray and characterization of a novel early estrogen-induced gene: EEIG1. Mol endocrinol (Baltimore MD) 18(2):402–411

    Article  CAS  Google Scholar 

  44. Borges S, Desta Z, Li L, Skaar TC, Ward BA, Nguyen A, Jin Y, Storniolo AM, Nikoloff DM, Wu L et al (2006) Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther 80(1):61–74. doi:10.1016/j.clpt.2006.03.013

    Article  PubMed  CAS  Google Scholar 

  45. Jordan VC, O’Malley BW (2007) Selective estrogen-receptor modulators and antihormonal resistance in breast cancer. J Clin Oncol 25(36):5815–5824. doi:10.1200/JCO.2007.11.3886

    Article  PubMed  CAS  Google Scholar 

  46. Jackson TA, Richer JK, Bain DL, Takimoto GS, Tung L, Horwitz KB (1997) The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT. Mol endocrinol (Baltimore MD) 11(6):693–705

    Article  CAS  Google Scholar 

  47. Smith CL, Nawaz Z, O’Malley BW (1997) Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol endocrinol (Baltimore MD) 11(6):657–666

    Article  CAS  Google Scholar 

  48. Graham JD, Bain DL, Richer JK, Jackson TA, Tung L, Horwitz KB (2000) Thoughts on tamoxifen resistant breast cancer. Are coregulators the answer or just a red herring? J Steroid Biochem Mol Biol 74(5):255–259. doi:10.1016/S0960-0760(00)00101-1

    Article  PubMed  CAS  Google Scholar 

  49. Lavinsky RM, Jepsen K, Heinzel T, Torchia J, Mullen TM, Schiff R, Del-Rio AL, Ricote M, Ngo S, Gemsch J et al (1998) Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci USA 95(6):2920–2925. doi:10.1073/pnas.95.6.2920

    Article  PubMed  CAS  Google Scholar 

  50. Girault I, Lerebours F, Amarir S, Tozlu S, Tubiana-Hulin M, Lidereau R, Bieche I (2003) Expression analysis of estrogen receptor alpha coregulators in breast carcinoma: evidence that NCOR1 expression is predictive of the response to tamoxifen. Clin Cancer Res 9(4):1259–1266

    PubMed  CAS  Google Scholar 

  51. Fleming FJ, Myers E, Kelly G, Crotty TB, McDermott EW, O’Higgins NJ, Hill AD, Young LS (2004) Expression of SRC-1, AIB1, and PEA3 in HER2 mediated endocrine resistant breast cancer: a predictive role for SRC-1. J Clin Pathol 57(10):1069–1074. doi:10.1136/jcp.2004.016733

    Article  PubMed  CAS  Google Scholar 

  52. Razandi M, Pedram A, Park ST, Levin ER (2003) Proximal events in signaling by plasma membrane estrogen receptors. J Biol Chem 278(4):2701–2712. doi:10.1074/jbc.M205692200

    Article  PubMed  CAS  Google Scholar 

  53. Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, Schiff R (2004) Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 96(12):926–935

    Article  PubMed  CAS  Google Scholar 

  54. Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107(7):823–826. doi:10.1016/S0092-8674(01)00616-X

    Article  PubMed  CAS  Google Scholar 

  55. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. doi:10.1016/S0092-8674(04)00045-5

    Article  PubMed  CAS  Google Scholar 

  56. Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32(Database issue):D109–D111. doi:10.1093/nar/gkh023

    Article  PubMed  CAS  Google Scholar 

  57. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16):7065–7070. doi:10.1158/0008-5472.CAN-05-1783

    Article  PubMed  CAS  Google Scholar 

  58. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103(7):2257–2261. doi:10.1073/pnas.0510565103

    Article  PubMed  CAS  Google Scholar 

  59. Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK, Fedele V, Ginzinger D, Getts R, Haqq C (2006) Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer 5:24. doi:10.1186/1476-4598-5-24

    Article  PubMed  CAS  Google Scholar 

  60. Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ, Barbosa-Morais NL, Teschendorff AE, Green AR, Ellis IO et al (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8(10):R214. doi:10.1186/gb-2007-8-10-r214

    Article  PubMed  CAS  Google Scholar 

  61. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34(Database issue):D140–D144. doi:10.1093/nar/gkj112

    Article  PubMed  CAS  Google Scholar 

  62. Hossain A, Kuo MT, Saunders GF (2006) Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol 26(21):8191–8201

    Article  PubMed  CAS  Google Scholar 

  63. Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, Liang S, Naylor TL, Barchetti A, Ward MR et al (2006) microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 103(24):9136–9141. doi:10.1073/pnas.0508889103

    Article  PubMed  CAS  Google Scholar 

  64. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500. doi:10.1038/ng1536

    Article  PubMed  CAS  Google Scholar 

  65. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866. doi:10.1038/nrc1997

    Article  PubMed  CAS  Google Scholar 

  66. Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269. doi:10.1038/nrc1840

    Article  PubMed  CAS  Google Scholar 

  67. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838. doi:10.1038/nature03702

    Article  PubMed  CAS  Google Scholar 

  68. Lowery AJ, Miller N, McNeill RE, Kerin MJ (2008) MicroRNAs as prognostic indicators and therapeutic targets: potential effect on breast cancer management. Clin Cancer Res 14(2):360–365. doi:10.1158/1078-0432.CCR-07-0992

    Article  PubMed  CAS  Google Scholar 

  69. de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J (2007) Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6(6):443–453. doi:10.1038/nrd2310

    Article  PubMed  CAS  Google Scholar 

  70. Check E (2005) A crucial test. Nat Med 11(3):243–244. doi:10.1038/nm0305-243

    Article  PubMed  CAS  Google Scholar 

  71. Aagaard L, Rossi JJ (2007) RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 59(2–3):75–86. doi:10.1016/j.addr.2007.03.005

    Article  PubMed  CAS  Google Scholar 

  72. Bumcrot D, Manoharan M, Koteliansky V, Sah DW (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2(12):711–719. doi:10.1038/nchembio839

    Article  PubMed  CAS  Google Scholar 

  73. Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Natl Rev 8(3):173–184. doi:10.1038/nrg2006

    Article  CAS  Google Scholar 

  74. Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, Jacob S, Majumder S (2008) MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem 283(44):29897–29903. doi:10.1074/jbc.M804612200

    Article  PubMed  CAS  Google Scholar 

  75. Pogribny IP, Tryndyak VP, Boyko A, Rodriguez-Juarez R, Beland FA, Kovalchuk O (2007) Induction of microRNAome deregulation in rat liver by long-term tamoxifen exposure. Mutat Res 619(1–2):30–37. doi:10.1016/j.mrfmmm.2006.12.006

    PubMed  CAS  Google Scholar 

  76. Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M, Gillespie E, Slack FJ (2007) MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 67(23):11111–11116. doi:10.1158/0008-5472.CAN-07-2858

    Article  PubMed  CAS  Google Scholar 

  77. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH (2007) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283(2):1026–1033

    Article  PubMed  CAS  Google Scholar 

  78. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133(2):647–658. doi:10.1053/j.gastro.2007.05.022

    Article  PubMed  CAS  Google Scholar 

  79. Zhu S, Si ML, Wu H, Mo YY (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282(19):14328–14336. doi:10.1074/jbc.M611393200

    Article  PubMed  CAS  Google Scholar 

  80. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65(14):6029–6033. doi:10.1158/0008-5472.CAN-05-0137

    Article  PubMed  CAS  Google Scholar 

  81. Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD, Patel T (2006) Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130(7):2113–2129. doi:10.1053/j.gastro.2006.02.057

    Article  PubMed  CAS  Google Scholar 

  82. Yang H, Kong W, He L, Zhao JJ, O’Donnell JD, Wang J, Wenham RM, Coppola D, Kruk PA, Nicosia SV et al (2008) MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 68(2):425–433. doi:10.1158/0008-5472.CAN-07-2488

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCafferty, M.P.J., McNeill, R.E., Miller, N. et al. Interactions between the estrogen receptor, its cofactors and microRNAs in breast cancer. Breast Cancer Res Treat 116, 425–432 (2009). https://doi.org/10.1007/s10549-009-0429-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0429-7

Keywords

Navigation