Skip to main content

Advertisement

Log in

Novel tumor sampling strategies to enable microarray gene expression signatures in breast cancer: a study to determine feasibility and reproducibility in the context of clinical care

  • Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Feasibility and reproducibility of microarray biomarkers in clinical settings are doubted because of reliance on fresh frozen tissue. We sought to develop and validate a paradigm of frozen tissue collection from early breast tumors to enable use of microarray in oncology practice. Frozen core needle biopsies (CNBx) were collected from 150 clinical stage I patients during image-guided diagnostic biopsy and/or surgery. Histology and tumor content from frozen cores were compared to diagnostic specimens. Twenty-eight patients had microarray analysis to examine accuracy and reproducibility of predictive gene signatures developed for estrogen receptor (ER) and HER2. One hundred twenty-seven (85%) of 150 patients had at least one frozen core containing cancer suitable for microarray analysis. Larger tumor size, ex vivo biopsy, and use of a new specimen device increased the likelihood of obtaining adequate specimens. Sufficient quality RNA was obtained from 90% of tumor cores. Microarray signatures predicting ER and HER2 expression were developed in training sets of up to 363 surgical samples and were applied to microarray data obtained from core samples collected in clinical settings. In these samples, prediction of ER and HER2 expression achieved a sensitivity/specificity of 94%/100%, and 82%/72%, respectively. Predictions were reproducible in 83–100% of paired samples. Frozen CNBx can be readily obtained from most breast cancers without interfering with pathologic evaluation in routine clinical settings. Collection of tumor tissue at diagnostic biopsy and/or at surgery from lumpectomy specimens using image guidance resulted in sufficient samples for array analysis from over 90% of patients. Sampling of breast cancer for microarray data is reproducible and feasible in clinical practice and can yield signatures predictive of multiple breast cancer phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. West M, Blanchette C, Dressman H et al (2001) Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci USA 98:11462–11467. doi:10.1073/pnas.201162998

    Article  CAS  PubMed  Google Scholar 

  2. van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009. doi:10.1056/NEJMoa021967

    Article  PubMed  Google Scholar 

  3. van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002(415):530–536. doi:10.1038/415530a

    Article  Google Scholar 

  4. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752. doi:10.1038/35021093

    Article  CAS  PubMed  Google Scholar 

  5. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874. doi:10.1073/pnas.191367098

    Article  CAS  PubMed  Google Scholar 

  6. Fan C, Oh DS, Wessels L et al (2006) Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355:560–569. doi:10.1056/NEJMoa052933

    Article  CAS  PubMed  Google Scholar 

  7. Buchholz TA, Stivers DN, Stec J et al (2002) Global gene expression changes during neoadjuvant chemotherapy for human breast cancer. Cancer J 8:461–468. doi:10.1097/00130404-200211000-00010

    Article  PubMed  Google Scholar 

  8. Pusztai L, Ayers M, Stec J et al (2003) Gene expression profiles obtained from fine-needle aspirations of breast cancer reliably identify routine prognostic markers and reveal large-scale molecular differences between estrogen-negative and estrogen-positive tumors. Clin Cancer Res 9:2406–2415

    CAS  PubMed  Google Scholar 

  9. Rouzier R, Perou CM, Symmans WF et al (2005) Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11:5678–5685. doi:10.1158/1078-0432.CCR-04-2421

    Article  CAS  PubMed  Google Scholar 

  10. Huang E, Cheng SH, Dressman H et al (2003) Gene expression predictors of breast cancer outcomes. Lancet 361:1590–1596. doi:10.1016/S0140-6736(03)13308-9

    Article  CAS  PubMed  Google Scholar 

  11. Pittman J, Huang E, Dressman H et al (2004) Integrated modeling of clinical and gene expression information for personalized prediction of disease outcomes. Proc Natl Acad Sci USA 101:8431–8436. doi:10.1073/pnas.0401736101

    Article  CAS  PubMed  Google Scholar 

  12. Huang E, Ishida S, Pittman J et al (2003) Gene expression phenotypic models that predict the activity of oncogenic pathways. Nat Genet 34:226–230. doi:10.1038/ng1167

    Article  CAS  PubMed  Google Scholar 

  13. Bild AH, Yao G, Chang JT et al (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439:353–357. doi:10.1038/nature04296

    Article  CAS  PubMed  Google Scholar 

  14. Sotiriou C, Piccart MJ (2007) Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat Rev Cancer 7:545–553. doi:10.1038/nrc2173

    Article  CAS  PubMed  Google Scholar 

  15. Dressman HK, Berchuck A, Chan G et al (2007) An integrated genomic-based approach to personalized treatment of patients with advanced-stage ovarian cancer. J Clin Oncol 25:517–525. doi:10.1200/JCO.2006.06.3743

    Article  CAS  PubMed  Google Scholar 

  16. Gong Y, Yan K, Lin F et al (2007) Determination of oestrogen-receptor status and ERBB2 status of breast carcinoma: a gene-expression profiling study. Lancet Oncol 8:203–211. doi:10.1016/S1470-2045(07)70042-6

    Article  CAS  PubMed  Google Scholar 

  17. Manning DL, McClelland RA, Knowlden JM et al (1995) Differential expression of oestrogen regulated genes in breast cancer. Acta Oncol 34:641–646. doi:10.3109/02841869509094041

    Article  CAS  PubMed  Google Scholar 

  18. Manning DL, McClelland RA, Gee JM et al (1993) The role of four oestrogen-responsive genes, pLIV1, pS2, pSYD3 and pSYD8, in predicting responsiveness to endocrine therapy in primary breast cancer. Eur J Cancer 29:1462–1468. doi:10.1016/0959-8049(93)90021-7

    Article  Google Scholar 

  19. Deb S, Tessier C, Prigent-Tessier A et al (1999) The expression of interleukin-6 (IL-6), IL-6 receptor, and gp 130 kilodalton glycoprotein in the rat decidua and a decidual cell line: regulation by 17beta-estradiol and prolactin. Endocrinology 140:4442–4450. doi:10.1210/en.140.10.4442

    Article  CAS  PubMed  Google Scholar 

  20. Altucci L, Addeo R, Cicatiello L et al (1996) 17beta-Estradiol induces cyclin D1 gene transcription, p36D1–p34cdk4 complex activation and p105Rb phosphorylation during mitogenic stimulation of G(1)-arrested human breast cancer cells. Oncogene 12:2315–2324

    CAS  PubMed  Google Scholar 

  21. Derrien A, Druey KM (2001) RGS16 function is regulated by epidermal growth factor receptor-mediated tyrosine phosphorylation. J Biol Chem 276:48532–48538

    CAS  PubMed  Google Scholar 

  22. Isomura M, Okui K, Fujiwara T, Shin S, Nakamura Y (1996) Isolation and mapping of RAB2L, a human cDNA that encodes a protein homologous to RalGDS. Cytogenet Cell Genet 74:263–265. doi:10.1159/000134431

    Article  CAS  PubMed  Google Scholar 

  23. Xia W, Chen JS, Zhou X et al (2004) Phosphorylation/cytoplasmic localization of p21Cip1/WAF1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients. Clin Cancer Res 10:3815–3824. doi:10.1158/1078-0432.CCR-03-0527

    Article  CAS  PubMed  Google Scholar 

  24. Zhang H, Kim JK, Edwards CA, Xu Z, Taichman R, Wang CY (2005) Clusterin inhibits apoptosis by interacting with activated bax. Nat Cell Biol 7:909–915. doi:10.1038/ncb1291

    Article  CAS  PubMed  Google Scholar 

  25. Wood B, Junckerstorff R, Sterrett G, Frost F, Harvey J, Robbins P (2007) A comparison of immunohistochemical staining for oestrogen receptor, progesterone receptor and HER-2 in breast core biopsies and subsequent excisions. Pathology 39:391–395. doi:10.1080/00313020701444465

    Article  CAS  PubMed  Google Scholar 

  26. Mann GB, Fahey VD, Feleppa F, Buchanan MR (2005) Reliance on hormone receptor assays of surgical specimens may compromise outcome in patients with breast cancer. J Clin Oncol 23:5148–5154. doi:10.1200/JCO.2005.02.076

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mike West, PhD, for discussion of data normalization and statistical approaches to microarray data used in this project. We also acknowledge Andrea Richardson, MD, PhD, and J. Dirk Iglehart, MD for microarray data sharing as part of an NIH breast cancer inter-SPORE collaboration between Duke University and the Dana Farber Cancer Center.

Conflict of interest statement

Duke University has been issued a USA patent (7,172,558 B2) for the tissue sampling device. Dr. Olson is founder of Core Prognostex, Inc. a company that has developed and markets tissue collection protocols and kits for correlative studies in oncology clinical trials. This company had no involvement in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Olson Jr..

Additional information

Supported by the Clinical Investigator and James Ewing Oncology Fellowship Awards from the Society of Surgical Oncology (JAO), NIH K23 CA106595 (JAO), R21 CA108707 (JAO), NIH T32 CA93245-01 (CLT), and the Duke/DFCC breast SPOREs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary materials (PDF 38.3 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tebbit, C.L., Zhai, J., Untch, B.R. et al. Novel tumor sampling strategies to enable microarray gene expression signatures in breast cancer: a study to determine feasibility and reproducibility in the context of clinical care. Breast Cancer Res Treat 118, 635–643 (2009). https://doi.org/10.1007/s10549-008-0301-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0301-1

Keywords

Navigation