Skip to main content

Advertisement

Log in

Low SAFB levels are associated with worse outcome in breast cancer patients

  • Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The scaffold attachment factors SAFB1 and SAFB2 have been shown to function as estrogen receptor (ERα) co-repressors in breast cancer cells, and to affect many cellular processes such as stress response, RNA processing, and apoptosis. SAFB1 and SAFB2 have also been implicated in breast tumorigenesis: Their shared chromosomal locus at 19p13 is frequently lost in breast cancer, mutations have been identified, and overexpression results in growth inhibition. The purpose of this study was to determine SAFB1/SAFB2 protein expression in human breast tumors, to correlate their expression with either natural progression (“prognostic factor”) or with response to Tamoxifen (“predictive factor”), and to analyze potential correlations with tumor characteristics. SAFB1/SAFB2 protein were measured by immunoblotting using a pan-SAFB antibody in tumor extracts from patients with long-term clinical follow-up (n = 289), a subset of whom had received no adjuvant systemic therapy after breast cancer surgery (n = 117) and another subset of whom were treated with adjuvant Tamoxifen (n = 172). SAFB levels were correlated with clinico-pathological variables and patient outcome. SAFB levels varied widely, with 25 tumors not expressing detectable levels of SAFB. SAFB expression was significantly correlated with ERα, HER-2, bcl-2 and with expression of other ERα coregulators such as SRC-3. There was no association between SAFB expression and disease free survival, however, low SAFB expression was significantly associated with worse overall survival in patients who did not receive adjuvant therapy. This study shows that low SAFB protein levels predict poor prognosis of breast cancer patients, suggesting critical functions of SAFB1 and SAFB2 in breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Clark GM, McGuire WL (1988) Steroid receptors and other prognostic factors in primary breast cancer. Semin Oncol 15(2 Suppl 1):20–25

    CAS  PubMed  Google Scholar 

  2. Denegri M, Moralli D, Rocchi M et al (2002) Human chromosomes 9, 12, and 15 contain the nucleation sites of stress-induced nuclear bodies. Mol Biol Cell 13(6):2069–2079. doi:10.1091/mbc.01-12-0569

    Article  CAS  PubMed  Google Scholar 

  3. Lee YB, Colley S, Norman M et al (2007) SAFB re-distribution marks steps of the apoptotic process. Exp Cell Res 313(18):3914–3923. doi:10.1016/j.yexcr.2007.06.023

    Article  CAS  PubMed  Google Scholar 

  4. Weighardt F, Cobianchi F, Cartegni L et al (1999) A novel hnRNP protein (HAP/SAF-B) enters a subset of hnRNP complexes and relocates in nuclear granules in response to heat shock. J Cell Sci 112(Pt 10):1465–1476

    CAS  PubMed  Google Scholar 

  5. Oesterreich S, Zhang Q, Hopp T et al (2000) Tamoxifen-bound estrogen receptor (ER) strongly interacts with the nuclear matrix protein HET/SAF-B, a novel inhibitor of ER-mediated transactivation. Mol Endocrinol 14(3):369–381. doi:10.1210/me.14.3.369

    Article  CAS  PubMed  Google Scholar 

  6. Debril MB, Dubuquoy L, Feige JN et al (2005) Scaffold attachment factor B1 directly interacts with nuclear receptors in living cells and represses transcriptional activity. J Mol Endocrinol 35(3):503–517. doi:10.1677/jme.1.01856

    Article  CAS  PubMed  Google Scholar 

  7. Osborne CK, Bardou V, Hopp TA et al (2003) Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst 95(5):353–361

    Article  CAS  PubMed  Google Scholar 

  8. Girault I, Lerebours F, Amarir S et al (2003) Expression analysis of estrogen receptor alpha coregulators in breast carcinoma: evidence that NCOR1 expression is predictive of the response to tamoxifen. Clin Cancer Res 9(4):1259–1266

    CAS  PubMed  Google Scholar 

  9. Hull DF III, Clark GM, Osborne CK et al (1983) Multiple estrogen receptor assays in human breast cancer. Cancer Res 43(1):413–416

    PubMed  Google Scholar 

  10. Encarnacion CA, Ciocca DR, McGuire WL et al (1993) Measurement of steroid hormone receptors in breast cancer patients on tamoxifen. Breast Cancer Res Treat 26(3):237–246. doi:10.1007/BF00665801

    Article  CAS  PubMed  Google Scholar 

  11. Dressler LG, Seamer LC, Owens MA et al (1988) DNA flow cytometry and prognostic factors in 1331 frozen breast cancer specimens. Cancer 61:420–427. doi:10.1002/1097-0142(19880201)61:3<420::AID-CNCR2820610303>3.0.CO;2-0

    Article  CAS  PubMed  Google Scholar 

  12. Jiang S, Meyer R, Kang K et al (2006) Scaffold attachment factor SAFB1 suppresses estrogen receptor alpha-mediated transcription in part via interaction with nuclear receptor corepressor. Mol Endocrinol 20(2):311–320. doi:10.1210/me.2005-0100

    Article  CAS  PubMed  Google Scholar 

  13. Miller BJ, Wang D, Krahe R et al (2003) Pooled analysis of loss of heterozygosity in breast cancer: a genome scan provides comparative evidence for multiple tumor suppressors and identifies novel candidate regions. Am J Hum Genet 73(4):748–767. doi:10.1086/378522

    Article  CAS  PubMed  Google Scholar 

  14. Oesterreich S, Allredl DC, Mohsin SK et al (2001) High rates of loss of heterozygosity on chromosome 19p13 in human breast cancer. Br J Cancer 84(4):493–498. doi:10.1054/bjoc.2000.1606

    Article  CAS  PubMed  Google Scholar 

  15. Townson SM, Sullivan T, Zhang Q et al (2000) HET/SAF-B overexpression causes growth arrest and multinuclearity and is associated with aneuploidy in human breast cancer. Clin Cancer Res 6(9):3788–3796

    CAS  PubMed  Google Scholar 

  16. Townson SM, Dobrzycka KM, Lee AV et al (2003) SAFB2, a new scaffold attachment factor homolog and estrogen receptor corepressor. J Biol Chem 278(22):20059–20068. doi:10.1074/jbc.M212988200

    Article  CAS  PubMed  Google Scholar 

  17. Townson SM, Kang K, Lee AV et al (2004) Structure-function analysis of the estrogen receptor alpha corepressor scaffold attachment factor-B1: identification of a potent transcriptional repression domain. J Biol Chem 279(25):26074–26081. doi:10.1074/jbc.M313726200

    Article  CAS  PubMed  Google Scholar 

  18. Bergman A, Abel F, Behboudi A et al (2008) No germline mutations in supposed tumour suppressor genes SAFB1 and SAFB2 in familial breast cancer with linkage to 19p. BMC Med Genet 9(1):108. doi:10.1186/1471-2350-9-108

    Article  PubMed  CAS  Google Scholar 

  19. Lee JY, Dong SM, Kim HS et al (1998) A distinct region of chromosome 19p13.3 associated with the sporadic form of adenoma malignum of the uterine cervix. Cancer Res 58:1140–1143

    CAS  PubMed  Google Scholar 

  20. Sobottka SB, Haase M, Fitze G et al (2000) Frequent loss of heterozygosity at the 19p13.3 locus without LKB1/STK11 mutations in human carcinoma metastases to the brain. J Neurooncol 49(3):187–195. doi:10.1023/A:1006442024874

    Article  CAS  PubMed  Google Scholar 

  21. Adachi N, Lieber MR (2002) Bidirectional gene organization: a common architectural feature of the human genome. Cell 109(7):807–809. doi:10.1016/S0092-8674(02)00758-4

    Article  CAS  PubMed  Google Scholar 

  22. Yang MQ, Koehly LM, Elnitski LL (2007) Comprehensive annotation of bidirectional promoters identifies co-regulation among breast and ovarian cancer genes. PLOS Comput Biol 3(4):e72. doi:10.1371/journal.pcbi.0030072

    Article  PubMed  CAS  Google Scholar 

  23. Yang MQ, Elnitski LL (2008) Diversity of core promoter elements comprising human bidirectional promoters. BMC Genomics 9(Suppl 2):S3

    Article  Google Scholar 

  24. Chan CM, Lykkesfeldt AE, Parker MG et al (1999) Expression of nuclear receptor interacting proteins TIF-1, SUG-1, receptor interacting protein 140, and corepressor SMRT in tamoxifen-resistant breast cancer. Clin Cancer Res 5(11):3460–3467

    CAS  PubMed  Google Scholar 

  25. Fleming FJ, Myers E, Kelly G (2004) Expression of SRC-1, AIB1, and PEA3 in HER2 mediated endocrine resistant breast cancer; a predictive role for SRC-1. J Clin Pathol 57(10):1069–1074. doi:10.1136/jcp.2004.016733

    Article  CAS  PubMed  Google Scholar 

  26. Myers E, Fleming FJ, Crotty TB (2004) Inverse relationship between ER-beta and SRC-1 predicts outcome in endocrine-resistant breast cancer. Br J Cancer 91(9):1687–1693

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Breast Center Pathology and Biostatistics Core for their critical support of the study. The study was supported by NIH Program Project Grant P01 CA030195 and the Dr. Mildred Scheel Stiftung, Deutsche Krebshilfe (German Cancer Aid). Finally, I would like to thank Ms. Kaiyan Kang for technical support and Dr. Adrian Lee for input and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffi Oesterreich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammerich-Hille, S., Bardout, V.J., Hilsenbeck, S.G. et al. Low SAFB levels are associated with worse outcome in breast cancer patients. Breast Cancer Res Treat 121, 503–509 (2010). https://doi.org/10.1007/s10549-008-0297-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0297-6

Keywords

Navigation