Breast Cancer Research and Treatment

, Volume 116, Issue 1, pp 17–29 | Cite as

Clinical proteomics in breast cancer: a review

  • Marie-Christine W. GastEmail author
  • Jan H. M. Schellens
  • Jos H. Beijnen


Breast cancer imposes a significant healthcare burden on women worldwide. Early detection is of paramount importance in reducing mortality, yet the diagnosis of breast cancer is hampered by the lack of an adequate detection method. In addition, better breast cancer prognostication may improve selection of patients eligible for adjuvant therapy. Hence, new markers for early diagnosis, accurate prognosis and prediction of response to treatment are warranted to improve breast cancer care. Since proteomics can bridge the gap between the genetic alterations underlying cancer and cellular physiology, much is expected from proteome analyses for the detection of better protein biomarkers. Recent technical advances in mass spectrometry, such as matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and its variant surface-enhanced laser desorption/ionisation (SELDI-) TOF MS, have enabled high-throughput proteome analysis. In the current review, we give a comprehensive overview of the results of expression proteomics (i.e. protein profiling) research performed in breast cancer using these two platforms. Many protein peaks have been reported to bear significant diagnostic, prognostic or predictive value, however, only few candidate markers have been structurally identified yet. In addition, although of pivotal importance in preventing overfitting of data and systematic bias by pre-analytical parameters, validation of biomarker candidates by other, quantitative, methods and/or in new populations is very limited. Moreover, none of the identified candidate biomarkers has been investigated for their utility as breast cancer markers in large, prospective, clinical settings. As such, the candidate biomarkers discussed in this overview have not been validated sufficiently to be used for clinical patient care. Nonetheless, regarding the promising results up to now, MALDI- and SELDI-TOF MS protein profiling studies could eventually fulfil the great promise that protein biomarkers have for improving cancer patient outcome, provided that these studies are performed with adequate statistical power and analytical rigour.


Breast cancer Biomarkers MALDI-TOF MS SELDI-TOF MS 


  1. 1.
    Jemal A, Siegel R, Ward E et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96. doi: 10.3322/CA.2007.0010 PubMedCrossRefGoogle Scholar
  2. 2.
    Ries LA, Melbert D, Krapcho M et al (2008) SEER Cancer Statistics Review, 1975–2004.
  3. 3.
    Early Breast Cancer Trialists’ Collaborative Group (1998) Polychemotherapy for early breast cancer: an overview of the randomised trials. Lancet 352:930–942Google Scholar
  4. 4.
    Mommers EC, van Diest PJ, Leonhart AM et al (1999) Balance of cell proliferation and apoptosis in breast carcinogenesis. Breast Cancer Res Treat 58:163–169. doi: 10.1023/A:1006396103777 PubMedCrossRefGoogle Scholar
  5. 5.
    Reis-Filho JS, Lakhani SR (2003) The diagnosis and management of pre-invasive breast disease: genetic alterations in pre-invasive lesions. Breast Cancer Res 5:313–319. doi: 10.1186/bcr650 PubMedCrossRefGoogle Scholar
  6. 6.
    ‘t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536. doi: 10.1038/415530a PubMedCrossRefGoogle Scholar
  7. 7.
    Wang Y, Klijn JG, Zhang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679PubMedGoogle Scholar
  8. 8.
    Miki Y, Swensen J, Shattuck-Eidens D et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71PubMedCrossRefGoogle Scholar
  9. 9.
    Vogelstein B, Kinzler KW (1994) Has the breast cancer gene been found? Cell 79:1–3. doi: 10.1016/0092-8674(94)90393-X PubMedCrossRefGoogle Scholar
  10. 10.
    Banks RE, Dunn MJ, Hochstrasser DF et al (2000) Proteomics: new perspectives, new biomedical opportunities. Lancet 356:1749–1756. doi: 10.1016/S0140-6736(00)03214-1 PubMedCrossRefGoogle Scholar
  11. 11.
    Aebersold R, Anderson L, Caprioli R et al (2005) Perspective: a program to improve protein biomarker discovery for cancer. J Proteome Res 4:1104–1109. doi: 10.1021/pr050027n PubMedCrossRefGoogle Scholar
  12. 12.
    Dove A (1999) Proteomics: translating genomics into products? Nat Biotechnol 17:233–236. doi: 10.1038/6972 PubMedCrossRefGoogle Scholar
  13. 13.
    Clarke W, Zhang Z, Chan DW (2003) The application of clinical proteomics to cancer and other diseases. Clin Chem Lab Med 41:1562–1570. doi: 10.1515/CCLM.2003.239 PubMedCrossRefGoogle Scholar
  14. 14.
    Hondermarck H, Vercoutter-Edouart AS, Revillion F et al (2001) Proteomics of breast cancer for marker discovery and signal pathway profiling. Proteomics 1:1216–1232. doi: 10.1002/1615-9861(200110)1:10≤1216::AID-PROT1216≥3.0.CO;2-P PubMedCrossRefGoogle Scholar
  15. 15.
    Engwegen JY, Gast MC, Schellens JH et al (2006) Clinical proteomics: searching for better tumour markers with SELDI-TOF mass spectrometry. Trends Pharmacol Sci 27:251–259. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  16. 16.
    Hortin GL (2006) The MALDI-TOF mass spectrometric view of the plasma proteome and peptidome. Clin Chem 52:1223–1237. doi: 10.1373/clinchem.2006.069252 PubMedCrossRefGoogle Scholar
  17. 17.
    Hutchens TW, Yip TT (1993) New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun Mass Spectrom 7:576–580. doi: 10.1002/rcm.1290070703 CrossRefGoogle Scholar
  18. 18.
    Merchant M, Weinberger SR (2000) Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 21:1164–1177. doi: 10.1002/(SICI)1522-2683(20000401)21:6≤1164::AID-ELPS1164≥3.0.CO;2-0 PubMedCrossRefGoogle Scholar
  19. 19.
    Simpson RJ, Bernhard OK, Greening DW et al (2008) Proteomics-driven cancer biomarker discovery: looking to the future. Curr Opin Chem Biol 12:72–77. doi: 10.1016/j.cbpa.2008.02.010 PubMedCrossRefGoogle Scholar
  20. 20.
    Nakagawa T, Huang SK, Martinez SR et al (2006) Proteomic profiling of primary breast cancer predicts axillary lymph node metastasis. Cancer Res 66:11825–11830. doi: 10.1158/0008-5472.CAN-06-2337 PubMedCrossRefGoogle Scholar
  21. 21.
    Traub F, Feist H, Kreipe HH et al (2005) SELDI-MS-based expression profiling of ductal invasive and lobular invasive human breast carcinomas. Pathol Res Pract 201:763–770. doi: 10.1016/j.prp.2005.08.011 PubMedCrossRefGoogle Scholar
  22. 22.
    Cowherd SM, Espina VA, Petricoin EFIII et al (2004) Proteomic analysis of human breast cancer tissue with laser-capture microdissection and reverse-phase protein microarrays. Clin Breast Cancer 5:385–392. doi: 10.3816/CBC.2004.n.046 PubMedCrossRefGoogle Scholar
  23. 23.
    Sanders ME, Dias EC, Xu BJ et al (2008) Differentiating proteomic biomarkers in breast cancer by laser capture microdissection and MALDI MS. J Proteome Res 7:1500–1507. doi: 10.1021/pr7008109 PubMedCrossRefGoogle Scholar
  24. 24.
    Umar A, Dalebout JC, Timmermans AM et al (2005) Method optimisation for peptide profiling of microdissected breast carcinoma tissue by matrix-assisted laser desorption/ionisation-time of flight and matrix-assisted laser desorption/ionisation-time of flight/time of flight-mass spectrometry. Proteomics 5:2680–2688. doi: 10.1002/pmic.200400128 PubMedCrossRefGoogle Scholar
  25. 25.
    Leong S, Christopherson RI, Baxter RC (2007) Profiling of apoptotic changes in human breast cancer cells using SELDI-TOF mass spectrometry. Cell Physiol Biochem 20:579–590. doi: 10.1159/000107541 PubMedCrossRefGoogle Scholar
  26. 26.
    Hanash SM, Pitteri SJ, Faca VM (2008) Mining the plasma proteome for cancer biomarkers. Nature 452:571–579. doi: 10.1038/nature06916 PubMedCrossRefGoogle Scholar
  27. 27.
    Petricoin EF, Zoon KC, Kohn EC et al (2002) Clinical proteomics: translating benchside promise into bedside reality. Nat Rev Drug Discov 1:683–695. doi: 10.1038/nrd891 PubMedCrossRefGoogle Scholar
  28. 28.
    Conrads TP, Zhou M, Petricoin EFIII et al (2003) Cancer diagnosis using proteomic patterns. Expert Rev Mol Diagn 3:411–420. doi: 10.1586/14737159.3.4.411 PubMedCrossRefGoogle Scholar
  29. 29.
    Grizzle WE, Semmes OJ, Bigbee WL et al (2005) The need from review and understanding of SELDI/MALDI mass spectroscopy data prior to analysis. Cancer Inform 1:86–97Google Scholar
  30. 30.
    Good DM, Thongboonkerd V, Novak J et al (2007) Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future. J Proteome Res 6:4549–4555. doi: 10.1021/pr070529w PubMedCrossRefGoogle Scholar
  31. 31.
    Callesen AK, Vach W, Jorgensen PE et al (2008) Combined experimental and statistical strategy for mass spectrometry based serum protein profiling for diagnosis of breast cancer: a case-control study. J Proteome Res 7:1419–1426. doi: 10.1021/pr7007576 PubMedCrossRefGoogle Scholar
  32. 32.
    de Noo ME, Deelder A, van der Werff WM et al (2006) MALDI-TOF serum protein profiling for the detection of breast cancer. Onkologie 29:501–506. doi: 10.1159/000095933 PubMedCrossRefGoogle Scholar
  33. 33.
    Hu Y, Zhang S, Yu J et al (2005) SELDI-TOF-MS: the proteomics and bioinformatics approaches in the diagnosis of breast cancer. Breast 14:250–255. doi: 10.1016/j.breast.2005.01.008 PubMedCrossRefGoogle Scholar
  34. 34.
    Laronga C, Becker S, Watson P et al (2003) SELDI-TOF serum profiling for prognostic and diagnostic classification of breast cancers. Dis Markers 19:229–238PubMedGoogle Scholar
  35. 35.
    Pusztai L, Gregory BW, Baggerly KA et al (2004) Pharmacoproteomic analysis of prechemotherapy and postchemotherapy plasma samples from patients receiving neoadjuvant or adjuvant chemotherapy for breast carcinoma. Cancer 100:1814–1822. doi: 10.1002/cncr.20203 PubMedCrossRefGoogle Scholar
  36. 36.
    Shin S, Cazares L, Schneider H et al (2007) Serum biomarkers to differentiate benign and malignant mammographic lesions. J Am Coll Surg 204:1065–1071. doi: 10.1016/j.jamcollsurg.2007.01.036 PubMedCrossRefGoogle Scholar
  37. 37.
    Becker S, Cazares LH, Watson P et al (2004) Surfaced-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) differentiation of serum protein profiles of BRCA-1 and sporadic breast cancer. Ann Surg Oncol 11:907–914. doi: 10.1245/ASO.2004.03.557 PubMedCrossRefGoogle Scholar
  38. 38.
    Gast MC, Bonfrer JM, van Dulken EJ et al (2006) SELDI-TOF MS serum protein profiles in breast cancer: assessment of robustness and validity. Cancer Biomark 2:235–248PubMedGoogle Scholar
  39. 39.
    Vlahou A, Laronga C, Wilson L et al (2003) A novel approach toward development of a rapid blood test for breast cancer. Clin Breast Cancer 4:203–209. doi: 10.3816/CBC.2003.n.026 PubMedCrossRefGoogle Scholar
  40. 40.
    Belluco C, Petricoin EF, Mammano E et al (2007) Serum proteomic analysis identifies a highly sensitive and specific discriminatory pattern in stage 1 breast cancer. Ann Surg Oncol 14:2470–2476Google Scholar
  41. 41.
    Li J, Zhang Z, Rosenzweig J et al (2002) Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem 48:1296–1304PubMedGoogle Scholar
  42. 42.
    Li J, Orlandi R, White CN et al (2005) Independent validation of candidate breast cancer serum biomarkers identified by mass spectrometry. Clin Chem (Kyoto) 51:2229–2235CrossRefGoogle Scholar
  43. 43.
    Mathelin C, Cromer A, Wendling C et al (2006) Serum biomarkers for detection of breast cancers: a prospective study. Breast Cancer Res Treat 96:83–90Google Scholar
  44. 44.
    van Winden AWJ, Gast MCW, Beijnen JH et al (2008) Validation of previously identified serum biomarkers for breast cancer with SELDI-TOF MS: a case control study. BMC Med Genomics (accepted for publication)Google Scholar
  45. 45.
    Goncalves A, Esterni B, Bertucci F et al (2006) Postoperative serum proteomic profiles may predict metastatic relapse in high-risk primary breast cancer patients receiving adjuvant chemotherapy. Oncogene 25:981–989. doi: 10.1038/sj.onc.1209131 PubMedCrossRefGoogle Scholar
  46. 46.
    Song J, Patel M, Rosenzweig CN et al (2006) Quantification of fragments of human serum inter-alpha-trypsin inhibitor heavy chain 4 by a surface-enhanced laser desorption/ionization-based immunoassay. Clin Chem 52:1045–1053. doi: 10.1373/clinchem.2005.065722 PubMedCrossRefGoogle Scholar
  47. 47.
    Villanueva J, Shaffer DR, Philip J et al (2006) Differential exoprotease activities confer tumor-specific serum peptidome patterns. J Clin Invest 116:271–284. doi: 10.1172/JCI26022 PubMedCrossRefGoogle Scholar
  48. 48.
    Fung ET, Yip TT, Lomas L et al (2005) Classification of cancer types by measuring variants of host response proteins using SELDI serum assays. Int J Cancer 115:783–789. doi: 10.1002/ijc.20928 PubMedCrossRefGoogle Scholar
  49. 49.
    Goldsmith GH (2001) Hemostatic changes in patients with malignancy. Int J Hematol 73:151–156. doi: 10.1007/BF02981931 PubMedCrossRefGoogle Scholar
  50. 50.
    Shi Q, Harris LN, Lu X et al (2006) Declining plasma fibrinogen alpha fragment identifies HER2-positive breast cancer patients and reverts to normal levels after surgery. J Proteome Res 5:2947–2955. doi: 10.1021/pr060099u PubMedCrossRefGoogle Scholar
  51. 51.
    van der Werff MP, Mertens B, de Noo ME et al (2008) Case-control breast cancer study of MALDI-TOF proteomic mass spectrometry data on serum samples. Stat Appl Genet Mol Biol 7:Article 2Google Scholar
  52. 52.
    Barrett JH, Cairns DA (2008) Application of the random forest classification method to peaks detected from mass spectrometric proteomic profiles of cancer patients and controls. Stat Appl Genet Mol Biol 7:Article 4Google Scholar
  53. 53.
    Heidema AG, Nagelkerke N (2008) Developing a discrimination rule between breast cancer patients and controls using proteomics mass spectrometric data: a three-step approach. Stat Appl Genet Mol Biol 7:Article 5Google Scholar
  54. 54.
    Fearn T (2008) Principal component discriminant analysis. Stat Appl Genet Mol Biol 7:Article 6Google Scholar
  55. 55.
    Datta S (2008) Classification of breast cancer versus normal samples from mass spectrometry profiles using linear discriminant analysis of important features selected by random forest. Stat Appl Genet Mol Biol 7:Article 7Google Scholar
  56. 56.
    Hoefsloot HC, Smit S, Smilde AK (2008) A classification model for the Leiden proteomics competition. Stat Appl Genet Mol Biol 7:Article 8Google Scholar
  57. 57.
    Strimenopoulou F, Brown PJ (2008) Empirical Bayes logistic regression. Stat Appl Genet Mol Biol 7:Article 9Google Scholar
  58. 58.
    Goeman JJ (2008) Autocorrelated logistic ridge regression for prediction based on proteomics spectra. Stat Appl Genet Mol Biol 7:Article 10Google Scholar
  59. 59.
    Pham TV, van de Wiel MA, Jimenez CR (2008) Support vector machine approach to separate control and breast cancer serum samples. Stat Appl Genet Mol Biol 7:Article 11Google Scholar
  60. 60.
    Valkenborg D, Van Sanden S, Lin D et al (2008) A cross-validation study to select a classification procedure for clinical diagnosis based on proteomic mass spectrometry. Stat Appl Genet Mol Biol 7:Article 12Google Scholar
  61. 61.
    Gammerman A, Nouretdinov I, Burford B et al (2008) Clinical mass spectrometry proteomic diagnosis by conformal predictors. Stat Appl Genet Mol Biol 7:Article 13Google Scholar
  62. 62.
    He J, Gornbein J, Shen D et al (2007) Detection of breast cancer biomarkers in nipple aspirate fluid by SELDI-TOF and their identification by combined liquid chromatography-tandem mass spectrometry. Int J Oncol 30:145–154PubMedGoogle Scholar
  63. 63.
    Mendrinos S, Nolen JD, Styblo T et al (2005) Cytologic findings and protein expression profiles associated with ductal carcinoma of the breast in ductal lavage specimens using surface-enhanced laser desorption and ionization-time of flight mass spectrometry. Cancer 105:178–183. doi: 10.1002/cncr.21052 PubMedCrossRefGoogle Scholar
  64. 64.
    Li J, Zhao J, Yu X et al (2005) Identification of biomarkers for breast cancer in nipple aspiration and ductal lavage fluid. Clin Cancer Res 11:8312–8320. doi: 10.1158/1078-0432.CCR-05-1538 PubMedCrossRefGoogle Scholar
  65. 65.
    Paweletz CP, Trock B, Pennanen M et al (2001) Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF: potential for new biomarkers to aid in the diagnosis of breast cancer. Dis Markers 17:301–307PubMedGoogle Scholar
  66. 66.
    Sauter ER, Zhu W, Fan XJ et al (2002) Proteomic analysis of nipple aspirate fluid to detect biologic markers of breast cancer. Br J Cancer 86:1440–1443. doi: 10.1038/sj.bjc.6600285 PubMedCrossRefGoogle Scholar
  67. 67.
    Sauter ER, Shan S, Hewett JE et al (2005) Proteomic analysis of nipple aspirate fluid using SELDI-TOF-MS. Int J Cancer 114:791–796. doi: 10.1002/ijc.20742 PubMedCrossRefGoogle Scholar
  68. 68.
    Kuerer HM, Coombes KR, Chen JN et al (2004) Association between ductal fluid proteomic expression profiles and the presence of lymph node metastases in women with breast cancer. Surgery 136:1061–1069. doi: 10.1016/j.surg.2004.04.011 PubMedCrossRefGoogle Scholar
  69. 69.
    Noble JL, Dua RS, Coulton GR et al (2007) A comparative proteinomic analysis of nipple aspiration fluid from healthy women and women with breast cancer. Eur J Cancer 43:2315–2320. doi: 10.1016/j.ejca.2007.08.009 PubMedCrossRefGoogle Scholar
  70. 70.
    Pawlik TM, Fritsche H, Coombes KR et al (2005) Significant differences in nipple aspirate fluid protein expression between healthy women and those with breast cancer demonstrated by time-of-flight mass spectrometry. Breast Cancer Res Treat 89:149–157. doi: 10.1007/s10549-004-1710-4 PubMedCrossRefGoogle Scholar
  71. 71.
    Streckfus CF, Bigler LR, Zwick M (2006) The use of surface-enhanced laser desorption/ionization time-of-flight mass spectrometry to detect putative breast cancer markers in saliva: a feasibility study. J Oral Pathol Med 35:292–300. doi: 10.1111/j.1600-0714.2006.00427.x PubMedCrossRefGoogle Scholar
  72. 72.
    Gast MC, van Tinteren H, Bontenbal M et al (2008) Haptoglobin phenotype is not a predictor of recurrence free survival in high-risk primary breast cancer patients. BMC Cancer (accepted for publication)Google Scholar
  73. 73.
    Ricolleau G, Charbonnel C, Lode L et al (2006) Surface-enhanced laser desorption/ionization time of flight mass spectrometry protein profiling identifies ubiquitin and ferritin light chain as prognostic biomarkers in node-negative breast cancer tumors. Proteomics 6:1963–1975. doi: 10.1002/pmic.200500283 PubMedCrossRefGoogle Scholar
  74. 74.
    Goncalves A, Charafe-Jauffret E, Bertucci F et al (2008) Protein profiling of human breast tumor cells identifies novel biomarkers associated with molecular subtypes. Mol Cell Proteomics 7:1420–1433. doi: 10.1074/mcp.M700487-MCP200 PubMedCrossRefGoogle Scholar
  75. 75.
    Dekker LJ, Boogerd W, Stockhammer G et al (2005) MALDI-TOF mass spectrometry analysis of cerebrospinal fluid tryptic peptide profiles to diagnose leptomeningeal metastases in patients with breast cancer. Mol Cell Proteomics 4:1341–1349. doi: 10.1074/mcp.M500081-MCP200 PubMedCrossRefGoogle Scholar
  76. 76.
    Rompp A, Dekker L, Taban I et al (2007) Identification of leptomeningeal metastasis-related proteins in cerebrospinal fluid of patients with breast cancer by a combination of MALDI-TOF, MALDI-FTICR and nanoLC-FTICR MS. Proteomics 7:474–481PubMedCrossRefGoogle Scholar
  77. 77.
    Hu S, Loo JA, Wong DT (2006) Human body fluid proteome analysis. Proteomics 6:6326–6353. doi: 10.1002/pmic.200600284 PubMedCrossRefGoogle Scholar
  78. 78.
    Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874. doi: 10.1073/pnas.191367098 PubMedCrossRefGoogle Scholar
  79. 79.
    Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752. doi: 10.1038/35021093 PubMedCrossRefGoogle Scholar
  80. 80.
    Brozkova K, Budinska E, Bouchal P et al (2008) Surface-enhanced laser desorption/ionization time-of-flight proteomic profiling of breast carcinomas identifies clinicopathologically relevant groups of patients similar to previously defined clusters from cDNA expression. Breast Cancer Res 10:R48PubMedGoogle Scholar
  81. 81.
    Neve RM, Chin K, Fridlyand J et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527. doi: 10.1016/j.ccr.2006.10.008 PubMedCrossRefGoogle Scholar
  82. 82.
    Mian S, Ball G, Hornbuckle J et al (2003) A prototype methodology combining surface-enhanced laser desorption/ionization protein chip technology and artificial neural network algorithms to predict the chemoresponsiveness of breast cancer cell lines exposed to Paclitaxel and Doxorubicin under in vitro conditions. Proteomics 3:1725–1737. doi: 10.1002/pmic.200300526 PubMedCrossRefGoogle Scholar
  83. 83.
    Dowling P, Maurya P, Meleady P et al (2007) Purification and identification of a 7.6-kDa protein in media conditioned by superinvasive cancer cells. Anticancer Res 27:1309–1317PubMedGoogle Scholar
  84. 84.
    Heike Y, Hosokawa M, Osumi S et al (2005) Identification of serum proteins related to adverse effects induced by docetaxel infusion from protein expression profiles of serum using SELDI ProteinChip system. Anticancer Res 25:1197–1203PubMedGoogle Scholar
  85. 85.
    Habermann JK, Roblick UJ, Luke BT et al (2006) Increased serum levels of complement C3a anaphylatoxin indicate the presence of colorectal tumors. Gastroenterology 131:1020–1029. doi: 10.1053/j.gastro.2006.07.011 PubMedCrossRefGoogle Scholar
  86. 86.
    Zhang Z, Bast RC Jr, Yu Y et al (2004) Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res 64:5882–5890. doi: 10.1158/0008-5472.CAN-04-0746 PubMedCrossRefGoogle Scholar
  87. 87.
    Bank U, Kruger S, Langner J et al (2000) Review: peptidases and peptidase inhibitors in the pathogenesis of diseases. Disturbances in the ubiquitin-mediated proteolytic system. Protease–antiprotease imbalance in inflammatory reactions. Role of cathepsins in tumour progression. Adv Exp Med Biol 477:349–378. doi: 10.1007/0-306-46826-3_38 PubMedCrossRefGoogle Scholar
  88. 88.
    Blasi F (1999) Proteolysis, cell adhesion, chemotaxis, and invasiveness are regulated by the u-PA-u-PAR-PAI-1 system. Thromb Haemost 82:298–304PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Marie-Christine W. Gast
    • 1
    Email author
  • Jan H. M. Schellens
    • 2
    • 3
  • Jos H. Beijnen
    • 1
    • 3
  1. 1.Department of Pharmacy and PharmacologyThe Netherlands Cancer Institute/Slotervaart HospitalAmsterdamThe Netherlands
  2. 2.Department of Medical OncologyAntoni van Leeuwenhoek Hospital/The Netherlands Cancer InstituteAmsterdamThe Netherlands
  3. 3.Faculty of Science, Department of Pharmaceutical Sciences, Division of Biomedical AnalysisUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations