Skip to main content

Advertisement

Log in

Lysis of cancer cells by autologous T cells in breast cancer pleural effusates treated with anti-EpCAM BiTE antibody MT110

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

In the present study, the efficacy of a new drug, i.e. the bispecific single-chain antibody MT110 targeting the epithelial antigen EpCAM and the T-cell antigen CD3 was tested ex vivo in malignant pleural effusions (MPEs). EpCAM+ epithelial cells were found in 78% of the MPEs (n = 18). Ex vivo treatment of seven MPEs resulted in a dose-dependent specific lysis of 37 ± 27% (±SD) EpCAM+ cells with 10 ng/ml (P = 0.03) and 57 ± 29.5% EpCAM+ cells with 1,000 ng/ml MT110 (P = 0.016) after 72 h. As a prerequisite for redirected lysis, stimulation of the autologous CD4+ and CD8+ cells in MPE by 1,000 ng/ml MT110 resulted in 21 ± 17% CD4+/CD25+ and 29.4 ± 22% CD8+/CD25+ cells (P = 0.016, respectively) after 72 h. This was confirmed by a 22-fold release of TNF-α and 230-fold release of IFN-γ (1,000 ng/ml, 48 h, P = 0.03, respectively). Thus, relapsed breast cancer patients resistant to standard treatment might benefit from targeted therapy using MT110.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Antunes G, Neville E, Duffy J, Ali N (2003) BTS guidelines for the management of malignant pleural effusions. Thorax 58(Suppl II):ii29–ii38. doi:10.1136/thorax.58.suppl_2.ii29

    PubMed  Google Scholar 

  2. Neragi-Miandoab S (2008) Surgical and other invasive approaches to recurrent pleural effusion with malignant etiology. Support Care Cancer. doi:10.1007/s00520-008-0405-5

  3. Antony VB, Loddenkemper R, Astoul P et al (2001) Management of malignant pleural effusions. Eur Respir J 18:402–419. doi:10.1183/09031936.01.00225601

    Article  PubMed  CAS  Google Scholar 

  4. Barbetakis N, Antoniadis T, Tsilikas C (2004) Results of chemical pleurodesis with mitoxantrone in malignant pleural effusion from breast cancer. World J Surg 2:16. doi:10.1186/1477-7819-2-16

    Article  Google Scholar 

  5. Steger V, Mika U, Heikki T et al (2007) Who gains most? A 10-year experience with 611 thoracoscopic talc pleurodeses. Ann Thorac Surg 83:1940–1945. doi:10.1016/j.athoracsur.2007.02.061

    Article  PubMed  Google Scholar 

  6. Danner DE, Gmelich JT (1975) A comparative study of tumor cells from metastatic carcinoma of the breast in effusions. Acta Cytol 19(6):509–518

    PubMed  CAS  Google Scholar 

  7. Van de Molengraft FJ, Vooijs GP (1988) The interval between the diagnosis of malignancy and the development of effusions, with reference to the role of cytologic diagnosis. Acta Cytol 32:183–187

    PubMed  Google Scholar 

  8. Wiley EL, Roenn JV (1990) Metastatic breast carcinoma in pleural fluid. Acta Cytol 34:169–174

    PubMed  CAS  Google Scholar 

  9. Price BA, Ehya H, Lee JH (1992) Significance of pericellular lacunae in cell blocks of effusions. Acta Cytol 36:333–337

    PubMed  CAS  Google Scholar 

  10. Davidson B, Risberg B, Kristensen G et al (1999) Detection of cancer in effusions from patients diagnosed with gynaecological malignancies. Virchows Arch 435:43–49. doi:10.1007/s004280050393

    Article  PubMed  CAS  Google Scholar 

  11. Davidson B (2004) Malignant effusions: from diagnosis to biology. Diagn Cytopathol 31:246–254. doi:10.1002/dc.20133

    Article  PubMed  Google Scholar 

  12. Dieterich M, Goodman SN, Rojas-Corona RR et al (1994) Multivariate analysis of prognostic features in malignant pleural effusions from breast cancer patients. Acta Cytol 38:945–952

    PubMed  CAS  Google Scholar 

  13. Risberg B, Davidson B, Dong HP, Nesland JM, Berner A (2000) Flow cytometric immunophenotyping of serous effusions and peritoneal washings: comparison with immunocytochemistry and morphological findings. J Clin Pathol 53:513–517. doi:10.1136/jcp.53.7.513

    Article  PubMed  CAS  Google Scholar 

  14. Filho AL, Alves VA, Kanamura CT et al (2002) Identification of the primary site of metastatic adenocarcinoma in serous effusions. Acta Cytol 46:651–658

    Google Scholar 

  15. Lissoni P, Mandala M, Curigliano G et al (2001) Progress report on the palliative therapy of 100 patients with neoplastic effusions by intracavitary low-dose interleukin-2. Oncology 60:308–312. doi:10.1159/000058525

    Article  PubMed  CAS  Google Scholar 

  16. Lissoni P, Barni S, Tancini G et al (1995) Intracavitary therapy of neoplastic effusions with cytokines: comparison among interferon α, β and interleukin-2. Support Care Cancer 3:78–80. doi:10.1007/BF00343925

    Article  PubMed  CAS  Google Scholar 

  17. Sandler A (2007) Bevacizumab in non-small lung cancer. Clin Cancer Res 13:4613–4616. doi:10.1158/1078-0432.CCR-07-0647

    Article  CAS  Google Scholar 

  18. Iwata H (2007) Perspective of trastuzumab treatment. Breast Cancer 14:150–155. doi:10.2325/jbcs.955

    Article  PubMed  Google Scholar 

  19. Beano A, Signorino E, Evangelista A, Brusa D, Mistrangelo M (2008) Correlation between NK function and response to trastuzumab in metastatic breast cancer patients. J Transl Med. doi:10.1186/1479-5876-6-25

  20. Carter P (2001) Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1:118–129. doi:10.1038/35101072

    Article  PubMed  CAS  Google Scholar 

  21. Kufer P, Lutterbuese R, Baeuerle PA (2004) A revival of bispecific antibodies. Trends Biotechnol 22:238–244. doi:10.1016/j.tibtech.2004.03.006

    Article  PubMed  CAS  Google Scholar 

  22. Wolf E, Hofmeister R, Kufer P, Schlereth B, Baeuerle PA (2005) BITEs: bispecific antibody constructs with unique anti-tumor activity. Drug Discov Today 10:1237–1244. doi:10.1016/S1359-6446(05)03554-3

    Article  PubMed  CAS  Google Scholar 

  23. Dreier T, Lorenczewski G, Brandl C et al (2002) Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single chain bispecific antibody. Int J Cancer 100:690–697. doi:10.1002/ijc.10557

    Article  PubMed  CAS  Google Scholar 

  24. Brischwein K, Schlereth B, Guller B et al (2006) MT110: a novel bispecific single-chain antibody construct with high efficacy in eradicating established tumors. Mol Immunol 43:1129–1143. doi:10.1016/j.molimm.2005.07.034

    Article  PubMed  CAS  Google Scholar 

  25. Brischwein K, Parr L, Pflanz S et al (2007) Strictly target cell-dependent activation of T cells by bispecific single-chain antibody constructs of the BiTE class. J Immunother 30:798–807

    Article  PubMed  CAS  Google Scholar 

  26. Hoffmann P, Hofmeister R, Brischwein K et al (2005) Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int J Cancer 115:98–104. doi:10.1002/ijc.20908

    Article  PubMed  CAS  Google Scholar 

  27. Offner S, Hofmeister R, Romaniuk A, Kufer P, Baeuerle PA (2006) Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol Immunol 43:763–771. doi:10.1016/j.molimm.2005.03.007

    Article  PubMed  CAS  Google Scholar 

  28. Amann M, Brischwein K, Lutterbuese P et al (2008) Therapeutic window of MuS110, a single-chain antibody construct bispecific for murine EpCAM and murine CD3. Cancer Res 68:143–151. doi:10.1158/0008-5472.CAN-07-2182

    Article  PubMed  CAS  Google Scholar 

  29. Schlereth B, Fichtner I, Lorenczewski G et al (2005) Eradication of tumors from a human colon cancer cell line and from ovarian cancer metastases in immunodeficient mice by a single-chain Ep-CAM-/CD3-bispecific antibody construct. Cancer Res 65:2882–2889. doi:10.1158/0008-5472.CAN-04-2637

    Article  PubMed  CAS  Google Scholar 

  30. Schlereth B, Kleindienst P, Fichtner I et al (2006) Potent inhibition of local and disseminated tumor growth in immunocompetent mouse models by a bispecific antibody construct specific for Murine CD3. Cancer Immunol Immunother 55:785–796. doi:10.1007/s00262-005-0082-x

    Article  PubMed  CAS  Google Scholar 

  31. Ruf P, Lindhofer H et al (2001) Induction of a long-lasting antitumor immunity by a trifunctional bispecific antibody. Blood 98:2526–2534. doi:10.1182/blood.V98.8.2526

    Article  PubMed  CAS  Google Scholar 

  32. Morecki S, Lindhofer H, Yacovlev E, Gelfand Y, Slavin S (2006) Use of trifunctional bispecific antibodies to prevent graft versus host disease induced by allogeneic lymphocytes. Blood 107:1564–1569. doi:10.1182/blood-2005-07-2738

    Article  PubMed  CAS  Google Scholar 

  33. Morecki S, Lindhofer H, Yacovlev E, Gelfand Y, Ruf P (2008) Induction of a long-lasting antitumor immunity by concomitant cell therapy with allogeneic lymphocytes and trifunctional bispecific antibody. Exp Hematol. doi:10.1016/l.exphem.2008.03.005

  34. Burges A, Wimberger P, Kümper C, Gorbounova V, Sommer H, Schmalfeldt B (2007) Effective relief of malignant ascites in patients with advanced ovarian cancer by a trifunctional anti-EpCAM x anti-CD3 antibody: a phase I/II study. Clin Cancer Res 13:3899–3905. doi:10.1158/1078-0432.CCR-06-2769

    Article  PubMed  CAS  Google Scholar 

  35. Web article available on http://www.micromet.de

  36. Elsheikh TM, Kirkpatrick JL, Wu HH (2006) Comparison of ThinPrep and cytospin preparations in the evaluation of exfoliative cytology specimens. Cancer 108(3):144–149. doi:10.1002/cncr.21841

    Article  PubMed  Google Scholar 

  37. Al-Nafussi A, Carder PJ (1989) Monoclonal antibodies in the cytodiagnosis of serous effusions. Cytopathology 1:119–128. doi:10.1111/j.1365-2303.1990.tb00336.x

    Article  Google Scholar 

  38. Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29(4):577–580

    PubMed  CAS  Google Scholar 

  39. Xiang W, Wimberger P, Dreier T, Diebold J, Mayr D, Baeuerle PA et al (2003) Cytotoxic activity of novel human monoclonal antibody MT201 against primary ovarian tumor cells. J Cancer Res Clin Oncol 129(6):341–348. doi:10.1007/s00432-003-0438-6

    Article  PubMed  CAS  Google Scholar 

  40. Lee YC, Light RW (2004) Management of malignant pleural effusions. Respirology 9:148–156. doi:10.1111/j.1440-1843.2004.00566.x

    Article  PubMed  Google Scholar 

  41. Janssen JP, Collier G, Astoul P et al (2007) Safety of pleurodesis with talc poudrage in malignant pleural effusion: a prospective cohort study. Lancet 369:1535–1539. doi:10.1016/S0140-6736(07)60708-9

    Article  PubMed  Google Scholar 

  42. Baeuerle PA, Gires O (2007) EpCAM (CD326) finding its role in cancer. Br J Cancer 96:417–423. doi:10.1038/sj.bjc.6603494

    Article  PubMed  CAS  Google Scholar 

  43. Chaudry MA, Sales K, Ruf P, Lindhofer H, Winslet MC (2007) EpCAM an immunotherapeutic target for gastrointestinal malignancy: current experience and future challenges. Br J Cancer 96:1013–1019. doi:10.1038/sj.bjc.6603505

    Article  PubMed  CAS  Google Scholar 

  44. Wimberger P, Xiang W, Mayr D et al (2003) Efficient tumor cell lysis by autologous, tumor-resident T lymphocytes in primary ovarian cancer samples by an EpCAM-/CD3-bispecific antibody. Int J Cancer 105:241–248. doi:10.1002/ijc.11056

    Article  PubMed  CAS  Google Scholar 

  45. Gajewski TF, Meng Y, Harlin H (2006) Immune suppression in the tumor microenvironment. J Immunother 29:233–240. doi:10.1097/01.cji.0000199193.29048.56

    Article  PubMed  CAS  Google Scholar 

  46. Gajewski TF (2006) Identifying and overcoming immune resistance mechanisms in the melanoma tumor microenvironment. Clin Cancer Res 12:2326s–2330s. doi:10.1158/1078-0432.CCR-05-2517

    Article  PubMed  CAS  Google Scholar 

  47. Schmitt M, Schmitt A, Reinhardt P et al (2004) Opsonization with a trifunctional bispecific (αCD3 × αEpCAM) antibody results in efficient lysis in vitro and in vivo of EpCAM positive tumor cells by cytotoxic T lymphocytes. Int J Oncol 25:841–848

    PubMed  CAS  Google Scholar 

  48. Bargou R, Noppeney R, Schuler M et al (2006) The bi-specific T-cell enhancer (BiTE) MT103 (MEDI-538) induces clinical responses in heavily pre-treated NHL patients: update from the ongoing phase I study MT103-104. Blood (ASH Annual Meeting Abstracts) 108:Abstract 693

  49. Spizzo G, Went P, Dirnhofer S et al (2004) High Ep-CAM expression is associated with poor prognosis in node-positive breast cancer. Breast Cancer Res Treat 86:207–213. doi:10.1023/B:BREA.0000036787.59816.01

    Article  PubMed  CAS  Google Scholar 

  50. Went P, Lugli A, Meier S et al (2004) Frequent EpCAM protein expression in human carcinoma. Hum Pathol 35:122–128. doi:10.1016/j.humpath.2003.08.026

    Article  PubMed  CAS  Google Scholar 

  51. Rao CG, Chianese D, Doyle GV et al (2005) Expression of epithelial cell adhesion molecule in carcinoma cells present in blood and primary and metastatic tumors. Int J Oncol 27:49–57

    PubMed  CAS  Google Scholar 

  52. Al-Hajj M (2007) Cancer stem cells and oncology therapeutics. Curr Opin Oncol 19:61–64

    PubMed  Google Scholar 

  53. Osta WA, Chen Y, Mikhitarian K et al (2004) EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res 64:5818–5824. doi:10.1158/0008-5472.CAN-04-0754

    Article  PubMed  CAS  Google Scholar 

  54. Münz M, Kieu C, Mack B, Schmitt B, Zeidler R, Gires O (2004) The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene 23:5748–5758. doi:10.1038/sj.onc.1207610

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Departments of Surgery, Radiology, Gynaecology and Radiotherapy, all located at the University of Munich, Klinikum Großhadern, Munich, Germany for sample collection, Mr. C. Brandl (Micromet AG, Munich, Germany) for technical assistance with the cytokine assays and Dr. A. Crispin (Institute of Biometry and Epidemiology, Munich, Germany) for advice in statistical analysis.

Contributors

Conception and design of the study was done by Barbara Mayer and Bernd Schlereth. Juliane Witthauer processed and analyzed the patient samples, acquired and interpreted the data and performed the statistical analysis. Hauke Winter and Ilona Funke were responsible for the management of the patient samples. Barbara Mayer, Bernd Schlereth, and Klaus Brischwein supervised the study. Karl-Walter Jauch and Patrick Baeuerle were involved in the interpretation of the data. All investigators contributed to the writing of the paper. The study was funded by Micromet and supported by the Curt-Bohnewand-Fonds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Mayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witthauer, J., Schlereth, B., Brischwein, K. et al. Lysis of cancer cells by autologous T cells in breast cancer pleural effusates treated with anti-EpCAM BiTE antibody MT110. Breast Cancer Res Treat 117, 471–481 (2009). https://doi.org/10.1007/s10549-008-0185-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0185-0

Keywords

Navigation