Skip to main content

Advertisement

Log in

No evidence that CDKN1B (p27) polymorphisms modify breast cancer risk in BRCA1 and BRCA2 mutation carriers

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The p27kip1 protein functions as an inhibitor of cyclin dependent kinase-2, and shows loss of expression in a large percentage of BRCA1 and BRCA2 breast cancer cases. We investigated the association between CDKN1B gene variants and breast cancer risk in 2359 female BRCA1 and BRCA2 mutation carriers from Australia, the UK, and the USA. Samples were genotyped for five single nucleotide polymorphisms, including coding variant rs2066827 (V109G). Cox regression provided no convincing evidence that any of the polymorphisms modified disease risk for BRCA1 or BRCA2 carriers, either alone or as a haplotype. Borderline associations were observed for homozygote carriers of the rs3759216 rare allele, but were opposite in effect for BRCA1 and BRCA2 carriers (adjusted hazard ratio (HR) 0.72 (95% CI = 0.53–0.99; P = 0.04 for BRCA1, HR 1.47 (95% CI = 0.99–2.18; P = 0.06 for BRCA2). The 95% confidence intervals for per allele risk estimates excluded a twofold risk, indicating that common CDKN1B polymorphisms do not markedly modify breast cancer risk among BRCA1 or BRCA2 carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antoniou A, Pharoah PD, Narod S et al (2003) Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72:1117–1130. doi:10.1086/375033

    Article  PubMed  CAS  Google Scholar 

  2. Turner N, Tutt A, Ashworth A (2004) Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 4:814–819. doi:10.1038/nrc1457

    Article  PubMed  CAS  Google Scholar 

  3. Chappuis PO, Kapusta L, Begin LR et al (2000) Germline BRCA1/2 mutations and p27(Kip1) protein levels independently predict outcome after breast cancer. J Clin Oncol 18:4045–4052

    PubMed  CAS  Google Scholar 

  4. Niwa Y, Oyama T, Nakajima T (2000) BRCA1 expression status in relation to DNA methylation of the BRCA1 promoter region in sporadic breast cancers. Jpn J Cancer Res 91:519–526

    PubMed  CAS  Google Scholar 

  5. Foulkes WD, Brunet JS, Stefansson IM et al (2004) The prognostic implication of the basal-like (cyclin E high/p27 low/p53+/glomeruloid-microvascular-proliferation+) phenotype of BRCA1-related breast cancer. Cancer Res 64:830–835. doi:10.1158/0008-5472.CAN-03-2970

    Article  PubMed  CAS  Google Scholar 

  6. Lloyd RV, Erickson LA, Jin L et al (1999) p27kip1: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol 154:313–323

    PubMed  CAS  Google Scholar 

  7. Yuan Y, Qin L, Liu D et al (2007) Genetic screening reveals an essential role of p27kip1 in restriction of breast cancer progression. Cancer Res 67:8032–8042. doi:10.1158/0008-5472.CAN-07-0083

    Article  PubMed  CAS  Google Scholar 

  8. Deans AJ, Simpson KJ, Trivett MK, Brown MA, McArthur GA (2004) Brca1 inactivation induces p27(Kip1)-dependent cell cycle arrest and delayed development in the mouse mammary gland. Oncogene 23:6136–6145. doi:10.1038/sj.onc.1207805

    Article  PubMed  CAS  Google Scholar 

  9. Davison EA, Lee CS, Naylor MJ et al (2003) The CDK inhibitor p27 (Kip1) regulates both DNA synthesis and apoptosis in mammary epithelium but is not required for its functional development during pregnancy. Mol Endocrinol 17:2536–2547

    Article  CAS  Google Scholar 

  10. Fero ML, Rivkin M, Tasch M et al (1996) A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 85:733–744. doi:10.1016/S0092-8674(00)81239-8

    Article  PubMed  CAS  Google Scholar 

  11. Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ (1998) The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 396:177–180. doi:10.1038/24179

    Article  PubMed  CAS  Google Scholar 

  12. Chang BL, Zheng SL, Isaacs SD et al (2004) A polymorphism in the CDKN1B gene is associated with increased risk of hereditary prostate cancer. Cancer Res 64:1997–1999. doi:10.1158/0008-5472.CAN-03-2340

    Article  PubMed  CAS  Google Scholar 

  13. Gonzalez P, Diez-Juan A, Coto E et al (2004) A single-nucleotide polymorphism in the human p27kip1 gene (−838C > A) affects basal promoter activity and the risk of myocardial infarction. BMC Biol 2:5. doi:10.1186/1741-7007-2-5

    Article  PubMed  Google Scholar 

  14. Chen TC, Ng KF, Lien JM, Jeng LB, Chen MF, Hsieh LL (2000) Mutational analysis of the p27(kip1) gene in hepatocellular carcinoma. Cancer Lett 153:169–173. doi:10.1016/S0304-3835(00)00366-9

    Article  PubMed  CAS  Google Scholar 

  15. Kibel AS, Suarez BK, Belani J et al (2003) CDKN1A and CDKN1B polymorphisms and risk of advanced prostate carcinoma. Cancer Res 63:2033–2036

    PubMed  CAS  Google Scholar 

  16. Guo W, Cui YJ, Fang SM, Li Y, Wang N, Zhang JH (2006) Association of polymorphisms of p21cip1 and p27kip1 genes with susceptibilities of esophageal squamous cell carcinoma and gastric cardiac adenocarcinoma. Ai Zheng 25:194–199

    Google Scholar 

  17. Li G, Sturgis EM, Wang LE et al (2004) Association between the V109G polymorphism of the p27 gene and the risk and progression of oral squamous cell carcinoma. Clin Cancer Res 10:3996–4002. doi:10.1158/1078-0432.CCR-04-0089

    Article  PubMed  CAS  Google Scholar 

  18. Tigli H, Buyru N, Dalay N (2005) Molecular analysis of the p27/kip1 gene in breast cancer. Mol Diagn 9:17–21. doi:10.2165/00066982-200509010-00003

    Article  PubMed  Google Scholar 

  19. Naidu R, Har YC, Taib NA (2007) P27 V109G Polymorphism is associated with lymph node metastases but not with increased risk of breast cancer. J Exp Clin Cancer Res 26:133–140

    PubMed  CAS  Google Scholar 

  20. Schondorf T, Eisele L, Gohring UJ et al (2004) The V109G polymorphism of the p27 gene CDKN1B indicates a worse outcome in node-negative breast cancer patients. Tumour Biol 25:306–312. doi:10.1159/000081396

    Article  PubMed  CAS  Google Scholar 

  21. Figueiredo JC, Knight JA, Cho S et al (2007) Polymorphisms cMyc-N11S and p27–V109G and breast cancer risk and prognosis. BMC Cancer 7:99. doi:10.1186/1471-2407-7-99

    Article  PubMed  CAS  Google Scholar 

  22. Couch FJ, Sinilnikova O, Vierkant RA et al (2007) AURKA F31I polymorphism and breast cancer risk in BRCA1 and BRCA2 mutation carriers: a consortium of investigators of modifiers of BRCA1/2 study. Cancer Epidemiol Biomarkers Prev 16:1416–1421. doi:10.1158/1055-9965.EPI-07-0129

    Article  PubMed  CAS  Google Scholar 

  23. Antoniou AC, Spurdle AB, Sinilnikova OM et al (2008) Common breast cancer-predisposition alleles are associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. Am J Hum Genet 82:1–12

    Article  CAS  Google Scholar 

  24. Goldgar DE, Easton DF, Deffenbaugh AM, Monteiro AN, Tavtigian SV, Couch FJ (2004) Integrated evaluation of DNA sequence variants of unknown clinical significance: application to BRCA1 and BRCA2. Am J Hum Genet 75:535–544. doi:10.1086/424388

    Article  PubMed  CAS  Google Scholar 

  25. Chenevix-Trench G, Healey S, Lakhani S et al (2006) Genetic and histopathologic evaluation of BRCA1 and BRCA2 DNA sequence variants of unknown clinical significance. Cancer Res 66:2019–2027. doi:10.1158/0008-5472.CAN-05-3546

    Article  PubMed  CAS  Google Scholar 

  26. Beesley J, Jordan SJ, Spurdle AB et al (2007) Association between single-nucleotide polymorphisms in hormone metabolism and DNA repair genes and epithelial ovarian cancer: results from two Australian studies and an additional validation set. Cancer Epidemiol Biomarkers Prev 16:2557–2565. doi:10.1158/1055-9965.EPI-07-0542

    Article  PubMed  CAS  Google Scholar 

  27. Huber PJ (1967) The behaviour of maximum likelihood estimates under non-standard conditions. Fifth Berkeley symposium in mathematical statistics and probability. University of California Press, Berkeley, California, pp 221–233

  28. Antoniou AC, Goldgar DE, Andrieu N et al (2005) A weighted cohort approach for analysing factors modifying disease risks in carriers of high-risk susceptibility genes. Genet Epidemiol 29:1–11. doi:10.1002/gepi.20074

    Article  PubMed  Google Scholar 

  29. Sinnwell JP, Schaid DJ, Yu Z (2007) Haplo.stats: statistical analysis of haplotypes with traits and covariates when linkage phase is ambiguous. R package. 1.3.0 ed

  30. Chappuis PO, Kapusta L, Begin LR et al (2000) Germline BRCA1/2 mutations and p27(Kip1) protein levels independently predict outcome after breast cancer. J Clin Oncol 18:4045–4052

    PubMed  CAS  Google Scholar 

  31. Porter PL, Barlow WE, Yeh IT et al (2006) p27(Kip1) and cyclin E expression and breast cancer survival after treatment with adjuvant chemotherapy. J Natl Cancer Inst 98:1723–1731

    Article  PubMed  CAS  Google Scholar 

  32. Chu IM, Hengst L, Slingerland JM (2008) The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 8:253–267. doi:10.1038/nrc2347

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

kConFab—The Kathleen Cuningham Consortium for Research into Familial Breast Cancer: We wish to thank Heather Thorne, Eveline Niedermayr, all the kConFab research nurses and staff, the heads and staff of the Family Cancer Clinics, and the Clinical Follow Up Study (funded by NHMRC grants 145684, 288704 and 454508) for their contributions to this resource, and the many families who contribute to kConFab. kConFab is supported by grants from the National Breast Cancer Foundation, the National Health and Medical Research Council (NHMRC) and by the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer Foundation of Western Australia. EMBRACE—M.C., S·P., and EMBRACE are funded by Cancer Research-UK. The following are EMBRACE collaborating centers. Coordinating Centre, Cambridge: Susan Peock, Margaret Cook, Alexandra Bignell and Debra Frost. North of Scotland Regional Genetics Service, Aberdeen: Neva Haites, Helen Gregory. Northern Ireland Regional Genetics Service, Belfast: Patrick Morrison. West Midlands Regional Clinical Genetics Service, Birmingham: Trevor Cole and Carole McKeown. South West Regional Genetics Service, Bristol: Alan Donaldson. East Anglian Regional Genetics Service, Cambridge: Joan Paterson. Medical Genetics Services for Wales, Cardiff: Alexandra Murray, Mark Rogers and Emma McCann. St James’s Hospital, Dublin and National Centre for Medical Genetics, Dublin: Peter Daly and David Barton. South East of Scotland Regional Genetics Service, Edinburgh: Mary Porteous and Michael Steel. Peninsula Clinical Genetics Service. Exeter: Carole Brewer and Julia Rankin.West of Scotland Regional Genetics Service, Glasgow: Rosemarie Davidson and Victoria Murday. South East Thames Regional Genetics Service, Guys Hospital London: Louise Izatt and Gabriella Pichert. North West Thames Regional Genetics Service, Harrow: Huw Dorkins. Leicestershire Clinical Genetics Service, Leicester: Richard Trembath.Yorkshire Regional Genetics Service, Leeds: Tim Bishop and Carol Chu. Merseyside and Cheshire Clinical Genetics Service, Liverpool: Ian Ellis. Manchester Regional Genetics Service, Manchester: D. Gareth Evans and Fiona Lalloo. North East Thames Regional Genetics Service, NE Thames: Alison Male, James Mackay, and Anne Robinson. Nottingham Centre for Medical Genetics, Nottingham: Carol Gardiner. Northern Clinical Genetics Service, Newcastle: Fiona Douglas and John Burn. Oxford Regional Genetics Service, Oxford: Lucy Side, Lisa Walker and Sarah Durell. Institute of Cancer Research and Royal Marsden NHS Foundation Trust: Rosalind Eeles. North Trent Clinical Genetics Service, Sheffield: Jackie Cook and Oliver Quarrell. South West Thames Regional Genetics Service, London: Shirley Hodgson. Wessex Clinical Genetics Service. Southampton: Diana Eccles and Anneke Lucassen. UPENN—Breast Cancer Research Foundation (KLN), QVC Network and the Fashion Footwear Association of New York, Marjorie B. Cohen Foundation, National Cancer Institute Cancer Genetics Network [HHSN216200744000C] (SMD). The genotyping was supported by an NHMRC Programme grant to GCT. ABS was funded by an NHMRC Career Development Award, AJD is a recipient of a Cancer Council of Victoria Postdoctoral fellowship, DD is an NHMRC Senior Research Fellow. ACA is funded by Cancer Research UK, DFE is a Principal Research Fellow of Cancer Research UK, GAM is the Weary Dunlop Fellow of the Cancer Council of Victoria, and GC-T is an NHMRC Senior Principal Research Fellow.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Amanda B. Spurdle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spurdle, A.B., Deans, A.J., Duffy, D. et al. No evidence that CDKN1B (p27) polymorphisms modify breast cancer risk in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res Treat 115, 307–313 (2009). https://doi.org/10.1007/s10549-008-0083-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0083-5

Keywords

Navigation