Skip to main content

Advertisement

Log in

Effect of Coenzyme Q10, Riboflavin and Niacin on Tamoxifen treated postmenopausal breast cancer women with special reference to blood chemistry profiles

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Background Tamoxifen (TAM) a non-steroidal antiestrogen, is widely used in adjuvant therapy for all stages of breast carcinomas and in chemoprevention of high-risk group. TAM also has estrogenic activity on liver and endometrium causing severe oxidative stress with various biochemical derangements. Coenzyme Q10, Riboflavin and Niacin (CoRN) are well-known potent antioxidants and protective agents against many diseases including cancer. In this context, this study was undertaken to find if co-administration of TAM along with CoRN could alleviate the sole TAM-induced biochemical derangements in postmenopausal women with breast cancer. Method The vitamin supplementation with TAM was given for a period of 90 days. Blood samples were collected at the base line, 45th and 90th day during the course of treatment. Various blood chemistry profiles were assessed in 78 untreated, sole TAM treated and combinatorial treated group along with 46 age- and sex-matched controls. Results A statistically significant alteration in various blood chemistry parameters, such as serum total bilirubin (S. BIL), serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), gamma glutamyl transpeptidase (γ-GT), uric acid (UA), lipoprotein lipase (LPL), lecithin: cholesterol acyl transferases (LCAT), potassium, calcium and Na+, K+-ATPase in sole TAM-treated group, was favorably reverted back to near normal levels on combinatorial therapy with CoRN. Conclusion TAM on co-administration with CoRN has a favorable impact on various blood chemistry profiles. However, large scale randomized studies over a longer time span are required to ascertain the safety and efficacy of co-administrating antioxidants with conventional chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Yancik R (2005) Population aging and cancer: a cross-national concern. Cancer J 11:437–441

    Article  PubMed  Google Scholar 

  2. Saphner T, Tormey DC, Gray R (1996) Annual hazard rates of recurrence for breast cancer after primary therapy. J Clin Oncol 14:2738–2746

    PubMed  CAS  Google Scholar 

  3. Dalen AV, Heering KJ, Barak V et al (1996) Treatment response in metastatic breast cancer. A multicentre study comparint UICC criteria and tumour marker changes. Breast 5:82–88

    Article  Google Scholar 

  4. Weigelt B, Peterse JL, van’t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602

    Article  PubMed  CAS  Google Scholar 

  5. Decensi A, Maisonneuve P, Rotmensz N, Italian Tamoxifen Study Group et al (2005) Effect of tamoxifen on venous thromboembolic events in a breast cancer prevention trial. Circulation 8:650–656

    Article  CAS  Google Scholar 

  6. Cruz Silva MM, Madeira VM, Almeida LM, Custodio JB (2007) Hydroxytamoxifen interaction with human erythrocyte membrane and induction of permeabilization and subsequent hemolysis. Toxicol In Vitro 15:615–622

    Article  Google Scholar 

  7. Yuvaraj S, Premkumar VG, Vijayasarathy K, Gangadaran SG, Sachdanandam P (2007) Ameliorating effect of coenzyme Q(10), riboflavin and niacin in tamoxifen-treated postmenopausal breast cancer patients with special reference to lipids and lipoproteins. Clin Biochem 40:623–628

    Article  PubMed  CAS  Google Scholar 

  8. Yuvaraj S, Premkumar VG, Vijayasarathy K, Gangadaran SG, Sachdanandam P (2008) Augmented antioxidant status in tamoxifen treated postmenopausal women with breast cancer on co-administration with Coenzyme Q(10), Niacin and Riboflavin. Cancer Chemother Pharmacol 61:933–941

    Article  PubMed  CAS  Google Scholar 

  9. Adlard JW, Campbell J, Bishop JM, Dodwell DJ (2002) Morbidity of tamoxifen-perceptions of patients and healthcare professionals. Breast 11:335–339

    Article  PubMed  CAS  Google Scholar 

  10. Elefsiniotis IS, Pantazis KD, Ilias A et al (2004) Tamoxifen induced hepatotoxicity in breast cancer patients with pre-existing liver steatosis: the role of glucose intolerance. Eur J Gastroenterol Hepatol 16:593–598

    Article  PubMed  CAS  Google Scholar 

  11. Baum M, Budzar AU, Cuzick J, ATAC Trialists’ Group et al (2002) Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomized trial. Lancet 359:2131–2139

    Article  PubMed  CAS  Google Scholar 

  12. Munshi A, Singh P (2007) Tamoxifen in breast cancer: not so easy to write off. Breast 17:121–124

    Article  PubMed  Google Scholar 

  13. Cuzick J, Forbes JF, Sestak I, International Breast Cancer Intervention Study I Investigators et al (2007) Long-term results of tamoxifen prophylaxis for breast cancer—96-month follow-up of the randomized IBIS-I trial. J Natl Cancer Inst 99:272–282

    Article  PubMed  CAS  Google Scholar 

  14. Nohl H, Gille L, Kozlov AV (1999) Critical aspects of the antioxidant function of coenzyme Q in biomembranes. Biofactors 9:155–161

    Article  PubMed  CAS  Google Scholar 

  15. Yalcin A, Kilinc E, Sagcan A, Kultursay H (2007) Coenzyme Q10 concentrations in coronary artery disease. Clin Biochem 37:706–709

    Article  CAS  Google Scholar 

  16. Premkumar VG, Yuvaraj S, Vijayasarathy K, Gangadaran SG, Sachdanandam P (2007) Effect of coenzyme Q10, riboflavin and niacin on serum CEA and CA 15-3 levels in breast cancer patients undergoing tamoxifen therapy. Biol Pharm Bull 30:367–370

    Article  PubMed  CAS  Google Scholar 

  17. Imada Y, Iida H, Ono S, Murahashi S (2003) Flavin catalyzed oxidations of sulfides and amines with molecular oxygen. J Am Chem Soc 125:2868–2869

    Article  PubMed  CAS  Google Scholar 

  18. Pangrekar J, Krishnaswamy K, Jagadeesan V (1993) Effects of riboflavin deficiency and riboflavin administration on carcinogen-DNA binding. Food Chem Toxicol 31:745–750

    Article  PubMed  CAS  Google Scholar 

  19. Van Den Donk M, Buijsse B, Van den Berg SW et al (2005) Dietary intake of folate and riboflavin, MTHFR C677T genotype, and colorectal adenoma risk: a Dutch case–control study. Cancer Epidemiol Biomarkers Prev 14:1562–1566

    Article  PubMed  Google Scholar 

  20. Kimura M, Umegaki K, Higuchi M, Thomas P, Fenech M (2004) Methylenetetrahydrofolate reductase C677T polymorphism, folic acid and riboflavin are important determinants of genome stability in cultured human lymphocytes. J Nutr 134:48–56

    PubMed  CAS  Google Scholar 

  21. Jacobson EL, Giacomoni PU, Roberts MJ, Wondrak GT, Jacobson MK (2001) Optimizing the energy status of skin cells during solar radiation. J Photochem Photobiol B 63:141–147

    Article  PubMed  CAS  Google Scholar 

  22. Benavente CA, Jacobson EL (2008) Niacin restriction upregulates NADPH oxidase and reactive oxygen species (ROS) in human keratinocytes. Free Radic Biol Med 44:527–537

    Article  PubMed  CAS  Google Scholar 

  23. Ganji SH, Kamanna VS, Kashyap ML (2003) Niacin and cholesterol: role in cardiovascular disease (Review). J Nutr Biochem 14:298–305

    Article  PubMed  CAS  Google Scholar 

  24. Dodge JT, Mitchell C, Hanahan DJ (1963) The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys 100:119–130

    Article  PubMed  CAS  Google Scholar 

  25. Legraud A, Gulliansseav RJ, Land J (1979) Method colorimetric simple determination del’activit., de la lecithin cholesterol acyl transferase (LCAT) Plasmatique. Interest on diabeteologic. In: Siest G, Glateau MM (eds) Biologic prospective. Masson, Paris, pp 368–371

  26. Hitz J, Steinmetz J, Siest G (1983) Plasma lecithin: cholesterol acyltransferase—reference values and effects of xenobiotics. Clin Chim Acta 133:85–96

    Article  PubMed  CAS  Google Scholar 

  27. Riley C (1966) Flame photometers. A comparative list of IS instruments. Technical Bulletin, No. 8, Association of clinical Biochemistry. From Ireland JT, After Hey Children’s Hospital, Liverpool

  28. Bonting SL (1970) In: Bittar EE (ed) Membranes and ion transport. Wiley-Inter Science, London, pp 257–263

  29. Hjerten S, Pan H (1983) Purification and characterization of two forms of a low-affinity Ca2+-ATPase from erythrocyte membranes. Biochim Biophys Acta 728:281–288

    Article  PubMed  CAS  Google Scholar 

  30. Ohnishi T, Suzuki T, Suzuki Y, Ozawa K (1982) A comparative study of plasma membrane Mg2+-ATPase activities in normal, regenerating and malignant cells. Biochim Biophys Acta 684:67–74

    Article  PubMed  CAS  Google Scholar 

  31. Buzdar A, Howell A, Cuzick J et al (2006) Comprehensive side-effect profile of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: long-term safety analysis of the ATAC trial. Lancet Oncol 7:633–643

    Article  PubMed  CAS  Google Scholar 

  32. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomized trials. Lancet 365:1687–1717

    Article  CAS  Google Scholar 

  33. Lox C, Ronaghan C, Cobos E (1998) Blood chemistry profile in menopausal women administered tamoxifen for breast cancer. Gen Pharmacol 30:121–124

    PubMed  CAS  Google Scholar 

  34. El-Beshbishy HA (2005) The effect of dimethyl dimethoxy biphenyl dicarboxylate (DDB) against tamoxifen-induced liver injury in rats: DDB use is curative or protective. J Biochem Mol Biol 38:300–306

    PubMed  CAS  Google Scholar 

  35. Mehreen L, Khanam A (2005) Evaluation of toxicities induced by chemotherapy in breast cancer patients. Biomed Pharmacother 59:524–527

    Article  PubMed  CAS  Google Scholar 

  36. Hellmann-Blumberg U, Taras TL, Wurz GT, DeGregorio MW (2000) Genotoxic effects of the novel mixed antiestrogen FC-1271a in comparison to tamoxifen and toremifene. Breast Cancer Res Treat 60:63–67

    Article  PubMed  CAS  Google Scholar 

  37. Powers HJ (2003) Riboflavin (vitamin B-2) and health. Am J Clin Nutr 77:352–1360

    Google Scholar 

  38. Powers HJ (1999) Current knowledge concerning optimum nutritional status of riboflavin, niacin and pyridoxine. Proc Nutr Soc 58:435–440

    Article  PubMed  CAS  Google Scholar 

  39. Crane FL (2007) Discovery of ubiquinone (coenzyme Q) and an overview of function. Mitochondrion 7:2–7

    Article  CAS  Google Scholar 

  40. López LC, Schuelke M, Quinzii CM et al (2006) Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am J Hum Genet 79:1125–1129

    Article  PubMed  Google Scholar 

  41. Upaganlawar A, Farswan M, Rathod S, Balaraman R (2006) Modification of biochemical parameters of gentamicin nephrotoxicity by coenzyme Q10 and green tea in rats. Indian J Exp Biol 44:416–418

    PubMed  CAS  Google Scholar 

  42. Appenroth D, Schulz O, Winnefeld K (1996) Riboflavin can decrease the nephrotoxic effect of chromate in young and adult rats. Toxicol Lett 87:47–52

    Article  PubMed  CAS  Google Scholar 

  43. Hemieda FA (2007) Influence of gender on tamoxifen-induced biochemical changes in serum of rats. Mol Cell Biochem 301:137–142

    Article  PubMed  CAS  Google Scholar 

  44. Han X, Liehr JG (1992) Induction of covalent DNA adducts in rodents by tamoxifen. Cancer Res 52:1360–1363

    PubMed  CAS  Google Scholar 

  45. Kovalchuk O, Han T, Fuscoe JC, Ross SA, Beland FA (2007) Gene expression profiling reveals underlying molecular mechanisms of the early stages of tamoxifen-induced rat hepatocarcinogenesis. Toxicol Appl Pharmacol 225:61–69

    Article  PubMed  CAS  Google Scholar 

  46. Kamath SK, Tang JM, Bramante PO (1977) Effect of dietary ascorbic acid on serum lipids and lipoprotein lipase activity in adipose and cardiac tissue in the guinea pig. Fed proc 36:114–120

    Google Scholar 

  47. Kumar K, Sachdanandam P, Arivazhagan R (1991) Studies on the changes in plasma lipids and lipoproteins in patients with benign and malignant breast cancer. Biochem Int 23:581–589

    PubMed  CAS  Google Scholar 

  48. Takagi A, Ikeda Y, Tsushima M, Yamamoto A (1997) Molecular and environmental base of primary type IV hyperlipoprotemia heterozygous lipoprotein lipase deficiency as a cause of genetic disorders. Atherosclerosis 134:27–29

    Article  Google Scholar 

  49. Kagan V, Serbinova E, Packer L (1990) Antioxidant effects of ubiquinones in microsomes and mitochondria are mediated by tocopherol recycling. Biochem Biophys Res Commun 169:851–857

    Article  PubMed  CAS  Google Scholar 

  50. Love RR, Mazess RB, Barden HS et al (1992) Effects of tamoxifen on bone mineral density in postmenopausal women with breast cancer. N Engl J Med 326:852–856

    PubMed  CAS  Google Scholar 

  51. Lomnicky Y, Friedman M, Luria MH, Raz I, Hoffman A (1998) The effect of the mode of administration on the hypolipidaemic activity of niacin: continuous gastrointestinal administration of low-dose niacin improves lipid-lowering efficacy in experimentally-induced hyperlipidaemic rats. J Pharm Pharmacol 50:1233–1239

    PubMed  CAS  Google Scholar 

  52. Vincenzi FF (1971) A calcium pump in red cell membranes. In: Nichols G, Wasserman RH (eds) Cellular mechanisms for calcium transfer and homeostasis. Academic press, New York, pp 135–148

    Google Scholar 

  53. Fariss MW, Pascoe GA, Reed DJ (1985) Vitamin E reversal of the effect of extracellular calcium on chemically induced toxicity in hepatocytes. Science 227:751–754

    Article  PubMed  CAS  Google Scholar 

  54. Pascoe GA, Fariss MW, Olafsdottir K, Reed DJ (1987) A role of vitamin E in protection against cell injury. Maintenance of intracellular glutathione precursors and biosynthesis. Eur J Biochem 166:241–247

    Article  PubMed  CAS  Google Scholar 

  55. Perumal SS, Shanthi P, Sachdanandam P (2005) Energy-modulating vitamins—a new combinatorial therapy prevents cancer cachexia in rat mammary carcinoma. Br J Nutr 93:901–909

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors whole-heartedly thank Kaneka Corp., Japan for their philanthropic gift of Coenzyme Q10 samples and Madras Pharmaceuticals, Chennai, India for Niacin and Riboflavin samples. The technical expertise provided by Miss. Sridevi of Saravana Clinical Laboratory, Chennai, Dr. P. Shiva Kumar, Dr. Sarepaul, and Mr. Neelamohan of Kumaran Hospital, Chennai, Dr. Krishana Hande and Dr. Indira Hande of Hande Hospital, Chennai, Dr. K. Rengaswamy and Dr. A.L. Arun Kumar of Appaswamy Hospital, and Mr. S. Sasi Kumar, Dr. D. Dakshayani and Dr. V. Jaganathan of Billroth Hospital, Chennai is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panchanatham Sachdanandam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuvaraj, S., Premkumar, V.G., Shanthi, P. et al. Effect of Coenzyme Q10, Riboflavin and Niacin on Tamoxifen treated postmenopausal breast cancer women with special reference to blood chemistry profiles. Breast Cancer Res Treat 114, 377–384 (2009). https://doi.org/10.1007/s10549-008-0012-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0012-7

Keywords

Navigation