Skip to main content

Advertisement

Log in

A novel steroidal selective steroid sulfatase inhibitor KW-2581 inhibits sulfated-estrogen dependent growth of breast cancer cells in vitro and in animal models

  • Preclinical Type
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

We screened a series of 17β-(N-alkylcarbamoyl)-estra-1,3,5(10)trine-3-O-sulfamate derivatives, and describe here a potent and selective steroid sulfatase (STS) inhibitor with antitumor effects in breast cancer models in vitro and in vivo. In biochemical assays using crude enzymes isolated from recombinant Chinese hamster ovary cells expressing human arylsulfatses (ARSs), one of the best compounds, KW-2581, inhibited STS activity with an IC50 of 4.0 nM, while > 1000-fold higher concentrations were required to inhibit the other ARSs. The failure to stimulate the growth of MCF-7 human breast cancer cells as well as in uteri in ovariectomized rats indicated the lack of estrogenicity of this compound. In MCF-7 cells transfected with the STS gene, termed MCS-2 cells, KW-2581 inhibited the growth of cells stimulated by estrone sulfate (E1S) but also 5-androstene-3β, 17β-diol 3-sulfate (ADIOLS) and dehydroepiandrostenedione 3-sulfate. We found that oral administration of KW-2581 inhibited both E1S- and ADIOLS-stimulated growth of MCS-2 cells in a mouse hollow fiber model. In a nitrosomethylurea-induced rat mammary tumor model, KW-2581 induced regression of E1S-stimulated tumor growth as effectively as tamoxifen or another STS inhibitor, 667 Coumate. Dose-response studies in the same rat model demonstrated that more than 90% inhibition of STS activity in tumors was necessary to induce tumor shrinkage. STS activity in tumors has well correlated with that in leukocytes, suggesting that STS activity in leukocytes could be used as an easily detectable pharmacodynamic marker. These findings demonstrate that KW-2581 is a candidate for development as a therapeutic agent for the treatment of hormone receptors-positive breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

STS:

steroid sulfatase

E1:

estrone

DHEA:

dehydroepiandrostenedione

ARS(s):

arylsulfatase(s)

NPS:

p-nitrophenyl sulfate

MUS:

4-methylumbelliferyl sulfate

NCS:

p-nitrocatechol sulfate

MLD:

metachromatic leukodystrophy

MPS-VI:

mucopolysaccharidosis type VI

XLRI:

X-linked recessive ichthyosis

CDPX:

X-linked recessive chondrodysplasis punctata

E2:

17β-estradiol

17β-HSD1:

17β-hydroxysteroid dehydrogenase type 1

E1S:

estrone 3-sulfate

ADIOL:

5-androstene-3β, 17β-diol

ER:

estrogen receptor

DHEAS:

dehydroepiandrostenedione 3-sulfate

ADIOLS:

5-androstene-3β, 17β-diol 3-sulfate

SERM:

selective estrogen receptor modulator

PK/PD:

pharmacokinetic/pharmacodynamic

CHO:

Chinese hamster ovary

4OH-TAM:

4-hydroxytamoxifen

MTT:

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide

NMU:

N-nitroso-N-methylurea

des-KW:

the dessulfamoylated form of KW-2581

MC400:

methyl cellulose 400 cP

FBS:

fetal bovine serum

PgR:

progesterone receptor

AUC:

area under the plasma concentration versus time curve

EMATE:

estrone-3-O-sulfamate

References

  1. Parenti G, Meroni G, Ballabio A (1997) The sulfatase gene family. Curr Opin Genet Dev 7:386–391

    Article  CAS  PubMed  Google Scholar 

  2. Dibbelt L, Kuss E: (1991) Human placental sterylsulfatase interaction of the isolated enzyme with substrates, products, transition-state analogues, amino-acid modifiers and anion transport inhibitors. Biol Chem Hoppe Seyler 372:173–185

    CAS  PubMed  Google Scholar 

  3. Mehl E, Jatzkewitz H (1968) Cerebroside 3-sulfate as a physiological substrate of arylsulfatase A. Biochim Biophys Acta 151:619–627

    CAS  PubMed  Google Scholar 

  4. Matalon R, Arbogast B, Dorfman A (1974) Deficiency of chondroitin sulfate N-acetylgalactosamine 4-sulfate sulfatase in Maroteaux-Lamy syndrome. Biochem Biophys Res Commun 61:1450–1457

    Article  CAS  PubMed  Google Scholar 

  5. O’Brien JF, Cantz M, Spranger J (1974) Maroteaux-Lamy disease (mucopolysaccharidosis VI), subtype A: deficiency of a N-acetylgalactosamine-4-sulfatase. Biochem Biophys Res Commun 60:1170–1177

    Article  CAS  PubMed  Google Scholar 

  6. Chang PL, Mueller OT, Lafrenie RM, Varey PA, Rosa NE, Davidson RG, Henry WM, Shows TB (1990) The human arylsulfatase-C isoenzymes: two distinct genes that escape from X inactivation. Am J Hum Genet 46:729–737

    CAS  PubMed  Google Scholar 

  7. Franco B, Meroni G, Parenti G, Levilliers J, Bernard L, Gebbia M, Cox L, Maroteaux P, Sheffield L, Rappold GA, Andria G, Petit C, Ballabio A (1995) A cluster of sulfatase genes on Xp22.3: mutations in chondrodysplasia punctata (CDPX) and implications for warfarin embryopathy. Cell 81:15–25

    Article  CAS  PubMed  Google Scholar 

  8. Puca AA, Zollo M, Repetto M, Andolfi G, Guffanti A, Simon G, Ballabio A, Franco B (1997) Identification by shotgun sequencing, genomic organization, and functional analysis of a fourth arylsulfatase gene (ARSF) from the Xp22.3 region. Genomics 42:192–199

    Article  CAS  PubMed  Google Scholar 

  9. Fluharty AL, Fluharty CB, Bohne W, von Figura K, Gieselmann V (1991) Two new arylsulfatase A (ARSA) mutations in a juvenile metachromatic leukodystrophy (MLD) patient. Am J Hum Genet 49:1340–1350

    CAS  PubMed  Google Scholar 

  10. Litjens T, Hopwood JJ (2001) Mucopolysaccharidosis type VI: structural and clinical implications of mutations in N-acetylgalactosamine-4-sulfatase. Hum Mutat 18:282–295

    Article  CAS  PubMed  Google Scholar 

  11. Ballabio A, Parenti G, Tippett P, Mondello C, Di Maio S, Tenore A, Andria G (1986) X-linked ichthyosis, due to steroid sulphatase deficiency, associated with Kallmann syndrome (hypogonadotropic hypogonadism and anosmia): linkage relationships with Xg and cloned DNA sequences from the distal short arm of the X chromosome. Hum Genet 72:237–240

    Article  CAS  PubMed  Google Scholar 

  12. Hernandez-Martin A, Gonzalez-Sarmiento R, De Unamuno P (1999) X-linked ichthyosis: an update. Br J Dermatol 141:617–627

    Article  CAS  PubMed  Google Scholar 

  13. Zettersten E, Man MQ, Sato J, Denda M, Farrell A, Ghadially R, Williams ML, Feingold KR, Elias PM (1998) Recessive X-linked ichthyosis: role of cholesterol-sulfate accumulation in the barrier abnormality. J Invest Dermatol 111:784–790

    Article  CAS  PubMed  Google Scholar 

  14. Parenti G, Buttitta P, Meroni G, Franco B, Bernard L, Rizzolo MG, Brunetti-Pierri N, Ballabio A, Andria G (1997) X-linked recessive chondrodysplasia punctata due to a new point mutation of the ARSE gene. Am J Med Genet 73:139–143

    Article  CAS  PubMed  Google Scholar 

  15. Henderson IC, Canellos GP (1980) Cancer of the breast: the past decade. N Engl J Med 302:17–30

    Article  CAS  PubMed  Google Scholar 

  16. Suzuki T, Moriya T, Ishida T, Ohuchi N, Sasano H (2003) Intracrine mechanism of estrogen synthesis in breast cancer. Biomed Pharmacother 57:460–462

    Article  CAS  PubMed  Google Scholar 

  17. Miller WR, Dixon JM (2001) Local endocrine effects of aromatase inhibitors within the breast. J Steroid Biochem Mol Biol 79:93–102

    Article  CAS  PubMed  Google Scholar 

  18. MacIndoe JH (1988) The hydrolysis of estrone sulfate and dehydroepiandrosterone sulfate by MCF-7 human breast cancer cells. Endocrinology 123:1281–1287

    Article  CAS  PubMed  Google Scholar 

  19. Prost O, Turrel MO, Dahan N, Craveur C, Adessi GL (1984) Estrone and dehydroepiandrosterone sulfatase activities and plasma estrone sulfate levels in human breast carcinoma. Cancer Res 44:661–664

    CAS  PubMed  Google Scholar 

  20. Perel E, Daniilescu D, Kharlip L, Blackstein M, Killinger DW (1988) Steroid modulation of aromatase activity in human cultured breast carcinoma cells. J Steroid Biochem 29:393–399

    Article  CAS  PubMed  Google Scholar 

  21. Abul-Hajj YJ (1979) Relationship between estrogen receptors, 17 beta-hydroxysteroid dehydrogenase and estrogen content in human breast cancer. Steroids 34:217–225

    Article  CAS  PubMed  Google Scholar 

  22. Vermeulen A, Deslypere JP, Paridaens R, Leclercq G, Roy F, Heuson JC (1986) Aromatase, 17 β-hydroxysteroid dehydrogenase and intratissular sex hormone concentrations in cancerous and normal glandular breast tissue in postmenopausal women. Eur J Cancer Clin Oncol 22:515–525

    Article  CAS  PubMed  Google Scholar 

  23. Poulin R, Labrie F (1986) Stimulation of cell proliferation and estrogenic response by adrenal C19Δ5 steroids in the ZR-75–1 human breast cancer cell line. Cancer Res 46:4933–4937

    CAS  PubMed  Google Scholar 

  24. Bonney CB, Scanlon MJ, Jones DL, Beranek PA, Reed MJ, James VHT (1984) The interrelationship between plasma 5-ene adrenal androgens in normal women. J Steroid Biochem 20:1353–1355

    Article  CAS  PubMed  Google Scholar 

  25. Poortman J, Andriesse R, Agema A, Donker GH, Schwarz F, Thijssen JHH (1980) Adrenal androgen secretion and metabolism in postmenopausal women. In: Genazzani AR, Thijssen JHH, Siiteri PK (eds) Adrenal androgens. Raven Press, New York, pp 219–240

    Google Scholar 

  26. Utsumi T, Yoshimura N, Takeuchi S, Ando J, Maruta M, Maeda K, Harada N (1999) Steroid sulfatase expression is an independent predictor of recurrence in human breast cancer. Cancer Res 59:377–381

    CAS  PubMed  Google Scholar 

  27. Miyoshi Y, Ando A, Hasegawa S, Ishitobi M, Taguchi T, Tamaki Y, Noguchi S (2003) High expression of steroid sulfatase mRNA predicts poor prognosis in patients with estrogen receptor-positive breast cancer. Clin Cancer Res 9:2288–2293

    CAS  PubMed  Google Scholar 

  28. Suzuki T, Nakata T, Miki Y, Kaneko C, Moriya T, Ishida T, Akinaga S, Hirakawa H, Kimura M, Sasano H (2003) Estrogen sulfotransferase and steroid sulfatase in human breast carcinoma. Cancer Res 63:2762–2770

    CAS  PubMed  Google Scholar 

  29. Boeddinghaus MI, Dowsett M (2001) Comparative clinical pharmacology and pharmacokinetic interactions of aromatase inhibitors. J Steroid Biochem Mol Biol 79:85–91

    Article  CAS  PubMed  Google Scholar 

  30. Saji S, Toi M (2002) Aromatase inhibitors and other novel agents in breast cancer treatment. Expert Opin Emerging Drugs 7:301–317

    Article  Google Scholar 

  31. Nussbaumer P, Billich A (2003) Steroid sulfatase inhibitors. Expert Opin Ther Patents 13:605–625

    Article  CAS  Google Scholar 

  32. Ahmed S, Owen CP, James K, Sampson L, Patel CK (2002) Review of estrone sulfatase and its inhibitors – an important new target against hormone dependent breast cancer. Curr Med Chem 9:263–273

    CAS  PubMed  Google Scholar 

  33. Stanway SJ, Purohit A, Woo LW, Sufi S, Vigushin D, Ward R, Wilson RH, Stanczyk FZ, Dobbs N, Kulinskaya E, Elliott M, Potter BV, Reed MJ, Coombes RC (2006) Phase I study of STX 64 (667 Coumate) in breast cancer patients: the first study of a steroid sulfatase inhibitor. Clin Cancer Res 12:1585–1592

    Article  CAS  PubMed  Google Scholar 

  34. Ishida H, Nakata T, Sato N, Li PK, Kuwabara T, Akinaga S (2006) Inhibition of steroid sulfatase activity and cell proliferation in ZR-75-1 and BT-474 human breast cancer cells by KW-2581 in vitro and in vivo. Breast Cancer Res Treat DOI: 10.1007/s10549-006-9404-8

  35. Fluharty AL, Edmond J (1978) Arylsulfatases A and B from human liver. Methods Enzymol 50:537–547

    Article  CAS  PubMed  Google Scholar 

  36. Simard JP, Ameen M, Chang PL (1985) Biochemical characterization of arylsulfatase-C isozymes in human fibroblasts. Biochem Biophys Res Commun 128:1388–1394

    Article  CAS  PubMed  Google Scholar 

  37. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–277

    Article  CAS  PubMed  Google Scholar 

  38. Hollingshead MG, Alley MC, Camalier RF, Abbott BJ, Mayo JG, Malspeis L, Grever MR (1995) In vivo cultivation of tumor cells in hollow fibers. Life Sci 57:131–141

    Article  CAS  PubMed  Google Scholar 

  39. Alley MC, Pacula-Cox CM, Hursey ML, Rubinstein LR, Boyd MR (1991) Morphometric and colorimetric analyses of human tumor cell line growth and drug sensitivity in soft agar culture. Cancer Res 51:1247–1256

    CAS  PubMed  Google Scholar 

  40. Woo LWL, Purohit A, Malini B, Reed MJ, Potter BVL (2000) Potent active site-directed inhibition of steroid sulphatase by tricyclic coumarin-based sulphamates. Chem Biol 7:773–791

    Article  CAS  PubMed  Google Scholar 

  41. James MR, Skaar TC, Lee RY, MacPherson A, Zwiebel JA, Ahluwalia BS, Ampy F, Clarke R (2001) Constitutive expression of the steroid sulfatase gene supports the growth of MCF-7 human breast cancer cells in vitro and in vivo. Endocrinology 142:1497–1505

    Article  CAS  PubMed  Google Scholar 

  42. Purohit A, Williams GJ, Roberts CJ, Potter BVL, Reed MJ (1995) In vivo inhibition of oestrone sulphatase and dehydroepiandrosterone sulphatase by oestrone-3-O-sulphamate. Int J Cancer 63:106–111

    Article  CAS  PubMed  Google Scholar 

  43. Purohit A, Woo LW, Potter BVL, Reed MJ (2000) In vivo inhibition of estrone sulfatase activity and growth of nitrosomethylurea-induced mammary tumors by 667 COUMATE. Cancer Res 60:3394–3396

    CAS  PubMed  Google Scholar 

  44. Schreiner EP, Wolff B, Winiski AP, Billich A (2003) 6-(2-adamantan-2-ylidene-hydroxybenzoxazole)-O-sulfamate: a potent non-steroidal irreversible inhibitor of human steroid sulfatase. Bioorg Med Chem Lett 13:4313–4316

    Article  CAS  PubMed  Google Scholar 

  45. Purohit A, Vernon KA, Hummelinck AE, Woo LW, Hejaz HA, Potter BV, Reed MJ (1998) The development of A-ring modified analogues of oestrone-3-O-sulphamate as potent steroid sulphatase inhibitors with reduced oestrogenicity. J Steroid Biochem Mol Biol 64:269–275

    Article  CAS  PubMed  Google Scholar 

  46. Billich A, Nussbaumer P, Lehr P (2000) Stimulation of MCF-7 breast cancer cell proliferation by estrone sulfate and dehydroepiandrosterone sulfate: inhibition by novel non-steroidal steroid sulfatase inhibitors. J Steroid Biochem Mol Biol 73:225–235

    Article  CAS  PubMed  Google Scholar 

  47. Okada M, Nakagawa T, Iwashita S, Takegawa S, Fujii T, Koizumi N (2003) Development of novel steroid sulfatase inhibitors. I. Synthesis and biological evaluation of biphenyl-4-O-sulfamates. J Steroid Biochem Mol Biol 87:141–148

    Article  CAS  PubMed  Google Scholar 

  48. Shields-Botella J, Bonnet P, Duc I, Duranti E, Meschi S, Cardinali S, Prouheze P, Chaigneau AM, Duranti V, Gribaudo S, Riviere A, Mengual L, Carniato D, Cecchet L, Lafay J, Rondot B, Sandri J, Pascal JC, Delansorne R (2003) In vitro and in vivo models for the evaluation of new inhibitors of human steroid sulfatase, devoid of residual estrogenic activity. J Steroid Biochem Mol Biol 84:327–335

    Article  CAS  PubMed  Google Scholar 

  49. Peters RH, Chao WR, Sato B, Shigeno K, Zaveri NT, Tanabe M (2003) Steroidal oxathiazine inhibitors of estrone sulfatase. Steroids 68:97–110

    Article  CAS  PubMed  Google Scholar 

  50. Nakata T, Takashima S, Shiotsu Y, Murakata C, Ishida H, Akinaga S, Li PK, Sasano H, Suzuki T, Saeki T (2003) Role of steroid sulfatase in local formation of estrogen in post-menopausal breast cancer patients. J Steroid Biochem Mol Biol 86:455–460

    Article  CAS  PubMed  Google Scholar 

  51. Dorgan JF, Stanczyk FZ, Longcope C, Stephenson HE Jr, Chang L, Miller R, Franz C, Falk RT, Kahle L (1997) Relationship of serum dehydroepiandrosterone (DHEA), DHEA sulfate, and 5-androstene-3 beta, 17 beta-diol to risk of breast cancer in postmenopausal women. Cancer Epidemiol Biomarkers Prev 6:177–181

    CAS  PubMed  Google Scholar 

  52. Dikkeschei LD, Willemse PH, Wolthers BG, de Ruyter-Buitenhuis AW, Nagel GT (1993) Delta-5-androstenediol and its sulphate in serum and urine of normal adults and patients with endocrine diseases. Clin Endocrinol 39:475–482

    CAS  Google Scholar 

  53. Rose DP, Noonan JJ (1981) Hormone dependence of rat mammary tumors induced by N-nitrosomethylurea. Eur J Cancer Clin Oncol 17:1357–1358

    Article  CAS  PubMed  Google Scholar 

  54. Howell A, Cuzick J, Baum M, Buzdar A, Dowsett M, Forbes JF, Hoctin-Boes G, Houghton J, Locker GY, Tobias JS (2005) ATAC Trialists’ Group: Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet 365:60–62

    Article  CAS  PubMed  Google Scholar 

  55. Brodie A, Jelovac D, Long BJ (2003) Predictions from a preclinical model: studies of aromatase inhibitors and antiestrogens. Clin Cancer Res 9:455S-459S

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yoko Takata, Miyoko Suzuki, Koshimura Etsuko, Masao Asada, Kazuhiro Soshiroda, Akitoshi Hashimoto and Katsumi Takai for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Ishida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishida, H., Nakata, T., Suzuki, M. et al. A novel steroidal selective steroid sulfatase inhibitor KW-2581 inhibits sulfated-estrogen dependent growth of breast cancer cells in vitro and in animal models. Breast Cancer Res Treat 106, 215–227 (2007). https://doi.org/10.1007/s10549-007-9495-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9495-x

Keywords

Navigation