Skip to main content

Advertisement

Log in

Magnetic resonance imaging of breast lesions—a pathologic correlation

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging of the breast is useful in assessing breast lesions. An understanding of the pathologic characteristics of the tumors may help to understand these magnetic resonance imaging observations.

Large lesional size (>10 mm), ill-defined margin, and irregular outlines are associated with malignancy. These correlate with the pathological features of breast tumor, characterized by rapid growth rate, large size, and infiltrative growth pattern, invasion into stroma resulting in desmoplasia, and hence irregular outline and margin. The detection and estimation of tumor extent of invasive lobular carcinoma is problematic, even with magnetic resonance imaging, which is considered the most sensitivity. This inaccuracy likely derives from the characteristic linear, single cells infiltration growth pattern of the tumor, which is also often underestimated by clinical examination. Estimation of tumor extent after neoadjuvant chemotherapy is also essential but problematic by imaging, as the shrunken tumor becomes fibrotic, with stromal hyalinization, diminished microvasculature and tumor break up causing size underestimation. Non-enhancement of breast tumors occurs in about 8% of cases correlates with diffuse growth pattern, particularly of infiltrative lobular carcinoma. The observation of disproportionately high non-enhancing ductal carcinoma in situ remains an enigma. Finally, early rim enhancement correlates with small cancer nests, low ratio of peripheral to central fibrosis and high ratio of peripheral to central microvessel density. These may be related to increased vascular endothelial growth factor mediated increased microvessel density as well as increased permeability, which manifest as increased rapid contrast uptake and dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Heywang SH, Hahn D, Schmidt H et al (1986) MRI imaging of the breast using gadolinium-DTPA. J Comput Assist Tomogr 10:199–204

    Article  PubMed  CAS  Google Scholar 

  2. Bone B, Pentek Z, Perbeck L et al (1997) Diagnostic accuracy of mammography and contrast-enhanced MR imaging in 238 histologically verified breast lesions. Acta Radiol 38:489–496

    PubMed  CAS  Google Scholar 

  3. Stomper PC, Winston JS, Herman S et al (1997) Angiogenesis and dynamic MR imaging gadolinium enhancement of malignant and benign breast lesions. Breast Cancer Res Treat 45:39–46

    Article  PubMed  CAS  Google Scholar 

  4. Boetes C, Barentsz JO, Mus RD et al (1994) MR characterization of suspicious breast lesions with a gadolinium-enhanced TurboFLASH subtraction technique. Radiology 193:777–781

    PubMed  CAS  Google Scholar 

  5. Heiberg EV, Perman WH, Herrmann VM et al (1996) Dynamic sequential 3D gadolinium-enhanced MRI of the whole breast. Magn Reson Imaging 14:337–348

    Article  PubMed  CAS  Google Scholar 

  6. Muller-Schimpfle M, Stoll P, Stern W et al (1997) Do mammography, sonography, and MR mammography have a diagnostic benefit compared with mammography and sonography? AJR Am J Roentgenol 168:1323–1329

    PubMed  CAS  Google Scholar 

  7. Heywang-Kobrunner SH, Viehweg P, Heinig A et al (1997) Contrast-enhanced MRI of the breast: accuracy, value, controversies, solutions. Eur J Radiol 24:94–108

    Article  PubMed  CAS  Google Scholar 

  8. Morris EA, Schwartz LH, Dershaw DD et al (1997) MR imaging of the breast in patients with occult primary breast carcinoma. Radiology 205:437–440

    PubMed  CAS  Google Scholar 

  9. Boetes C, Mus RD, Holland R et al (1995) Breast tumors: comparative accuracy of MR imaging relative to mammography and US for demonstrating extent. Radiology 197:743–747

    PubMed  CAS  Google Scholar 

  10. Kepple J, Layeeque R, Klimberg VS et al (2005) Correlation of magnetic resonance imaging and pathologic size of infiltrating lobular carcinoma of the breast. Am J Surg 190:623–627

    Article  PubMed  Google Scholar 

  11. Rieber A, Merkle E, Bohm W et al (1997) MRI of histologically confirmed mammary carcinoma: clinical relevance of diagnostic procedures for detection of multifocal or contralateral secondary carcinoma. J Comput Assist Tomogr 21:773–779

    Article  PubMed  CAS  Google Scholar 

  12. Orel SG, Schnall MD, Powell CM et al (1995) Staging of suspected breast cancer: effect of MR imaging and MR-guided biopsy. Radiology 196:115–122

    PubMed  CAS  Google Scholar 

  13. Mumtaz H, Hall-Craggs MA, Davidson T et al (1997) Staging of symptomatic primary breast cancer with MR imaging. AJR Am J Roentgenol 169:417–424

    PubMed  CAS  Google Scholar 

  14. Fischer U, Kopka L, Grabbe E (1999) Breast carcinoma: effect of preoperative contrast-enhanced MR imaging on the therapeutic approach. Radiology 213:881–888

    PubMed  CAS  Google Scholar 

  15. Muuller RD, Barkhausen J, Sauerwein W et al (1998) Assessment of local recurrence after breast-conserving therapy with MRI. J Comput Assist Tomogr 22:408–412

    Article  PubMed  CAS  Google Scholar 

  16. Liberman L, Morris EA, Lee MJ et al (2002) Breast lesions detected on MR imaging: features and positive predictive value. AJR Am J Roentgenol 179:171–178

    PubMed  Google Scholar 

  17. Siegmann KC, Muller-Schimpfle M, Schick F et al (2002) MR imaging-detected breast lesions: histopathologic correlation of lesion characteristics and signal intensity data. AJR Am J Roentgenol 178:1403–1409

    PubMed  Google Scholar 

  18. Elston C, Ellis IO (2000) Assessment of histological grade. In: Elston CW, Ellis IO (eds), Symmets W (Emeritus Editor) The breast, systemic pathology, Col 13. Churchill Livingston, Edinburgh, pp 365–384

    Google Scholar 

  19. Walker RA, Camplejohn RS (1986) DNA flow cytometry of human breast carcinomas and its relationship to transferrin and epidermal growth factor receptors. J Pathol 150:37–42

    Article  PubMed  CAS  Google Scholar 

  20. Bouzubar N, Walker KJ, Griffiths K et al (1989) Ki67 immunostaining in primary breast cancer: pathological and clinical associations. Br J Cancer 59:943–947

    PubMed  CAS  Google Scholar 

  21. Fechner RE (1987) Fibroadenoma and related lesions. In: Page DL, Anderson TJ (eds) Diagnostic histopathology of the breast. Churchill Livingstone, Edinburgh, pp 72–85

    Google Scholar 

  22. Tsang WY, Chan JK et al (1996) Endocrine ductal carcinoma in situ (E-DCIS) of the breast: a form of low-grade DCIS with distinctive clinicopathologic and biologic characteristics. Am J Surg Pathol 20:921–943

    Article  PubMed  CAS  Google Scholar 

  23. Tse GM, Ma TK, Chu WC et al (2004) Neuroendocrine differentiation in pure type mammary mucinous carcinoma is associated with favorable histologic and immunohistochemical parameters. Mod Pathol 17:568–572

    Article  PubMed  Google Scholar 

  24. Nassar H, Qureshi H, Volkanadsay N et al (2006) Clinicopathologic analysis of solid papillary carcinoma of the breast and associated invasive carcinomas. Am J Surg Pathol 30:501–507

    Article  PubMed  Google Scholar 

  25. Orel SG, Schnall MD, LiVolsi VA et al (1994) Suspicious breast lesions: MR imaging with radiologic–pathologic correlation. Radiology 190:485–493

    PubMed  CAS  Google Scholar 

  26. Weinreb JC, Newstead G (1995) MR imaging of the breast. Radiology 196:593–610

    PubMed  CAS  Google Scholar 

  27. Krecke KN, Gisvold JJ (1993) Invasive lobular carcinoma of the breast: mammographic findings and extent of disease at diagnosis in 184 patients. AJR Am J Roentgenol 161:957–960

    PubMed  CAS  Google Scholar 

  28. Davis PL, Staiger MJ, Harris KB et al (1996) Breast cancer measurements with magnetic resonance imaging, ultrasonography, and mammography. Breast Cancer Res Treat 37:1–9

    Article  PubMed  CAS  Google Scholar 

  29. Paramagul CP, Helvie MA, Adler DD (1995) Invasive lobular carcinoma: sonographic appearance and role of sonography in improving diagnostic sensitivity. Radiology 195:231–234

    PubMed  CAS  Google Scholar 

  30. Butler RS, Venta LA, Wiley EL et al (1999) Sonographic evaluation of infiltrating lobular carcinoma. AJR Am J Roentgenol 172:325–330

    PubMed  CAS  Google Scholar 

  31. Kepple J, Layeeque R, Klimberg VS et al (2005) Correlation of magnetic resonance imaging and pathologic size of infiltrating lobular carcinoma of the breast. Am J Surg 190:623–627

    Article  PubMed  Google Scholar 

  32. Boetes C, Veltman J, van Die L et al (2004) The role of MRI in invasive lobular carcinoma. Breast Cancer Res Treat 86:31–37

    Article  PubMed  Google Scholar 

  33. AJCC (2002) Cancer staging handbook, 6th edn. Springer, New York, pp 255–282

  34. Qayyum A, Birdwell RL, Daniel BL et al (2002) MR imaging features of infiltrating lobular carcinoma of the breast: histopathologic correlation. AJR Am J Roentgenol 178:1227–1232

    PubMed  Google Scholar 

  35. Page DL, Anderson TJ, Sakamoto G (1987) Infiltrating carcinoma: major histological types. In: Page DL, Anderson TJ (eds) Diagnostic histopathology of the breast. Churchill Livingstone, Edinburgh, pp 193–235

    Google Scholar 

  36. Bonadonna G, Veronesi U, Brambilla C et al (1990) Primary chemotherapy to avoid mastectomy in tumors with diameters of three centimeters or more. J Natl Cancer Inst 82:1539–1545

    Article  PubMed  CAS  Google Scholar 

  37. Calais G, Berger C, Descamps P et al (1994) Conservative treatment feasibility with induction chemotherapy, surgery, and radiotherapy for patients with breast carcinoma larger than 3 cm. Cancer 74:1283–1288

    Article  PubMed  CAS  Google Scholar 

  38. Cocconi G, Di Blasio B, Alberti G et al (1984) Problems in evaluating response of primary breast cancer to systemic therapy. Breast Cancer Res Treat 4:309–313

    Article  PubMed  CAS  Google Scholar 

  39. Segel MC, Paulus DD, Hortobagyi GN (1988) Advanced primary breast cancer: assessment at mammography of response to induction chemotherapy. Radiology 169:49–54

    PubMed  CAS  Google Scholar 

  40. Partridge SC, Gibbs JE, Lu Y et al (2002) Accuracy of MR imaging for revealing residual breast cancer in patients who have undergone neoadjuvant chemotherapy. AJR Am J Roentgenol 179:1193–1199

    PubMed  Google Scholar 

  41. Esserman L, Kaplan E, Partridge S et al (2001) MRI phenotype is associated with response to doxorubicin and cyclophosphamide neoadjuvant chemotherapy in stage III breast cancer. Ann Surg Oncol 8:549–559

    Article  PubMed  CAS  Google Scholar 

  42. Delille JP, Slanetz PJ, Yeh ED et al (2003) Invasive ductal breast carcinoma response to neoadjuvant chemotherapy: noninvasive monitoring with functional MR imaging pilot study. Radiology 228:63–69 (Epub 2003 May 29)

    Article  PubMed  Google Scholar 

  43. Yeh E, Slanetz P, Kopans DB, Rafferty E et al (2005) Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer. AJR Am J Roentgenol 184:868–877

    PubMed  Google Scholar 

  44. Dao TH, Rahmouni A, Campana F (1993) Tumor recurrence versus fibrosis in the irradiated breast: differentiation with dynamic gadolinium-enhanced MR imaging. Radiology 187:751–755

    PubMed  CAS  Google Scholar 

  45. Wasser K, Sinn HP, Fink C et al (2003) Accuracy of tumor size measurement in breast cancer using MRI is influenced by histological regression induced by neoadjuvant chemotherapy. Eur Radiol 13:1213–1223 (Epub 2002 Nov 30)

    PubMed  CAS  Google Scholar 

  46. Elston CW, Ellis IO, Pinder SE (2000) Effects of treatment. In: Elston CW, Ellis IO (eds), Symmets W (Emeritus Editor) The breast, systemic pathology, Col 13. Churchill Livingston, Edinburgh, pp 463–476

    Google Scholar 

  47. Knopp MV, Brix G, Junkermann HJ et al (1994) MR mammography with pharmacokinetic mapping for monitoring of breast cancer treatment during neoadjuvant therapy. Magn Reson Imaging Clin N Am 2:633–658

    PubMed  CAS  Google Scholar 

  48. Harms SE, Flamig DP, Hesley KL et al (1993) Fat-suppressed three-dimensional MR imaging of the breast. Radiographics 13:247–267

    PubMed  CAS  Google Scholar 

  49. Bone B, Aspelin P, Bronge L et al (1996) Sensitivity and specificity of MR mammography with histopathological correlation in 250 breasts. Acta Radiol 37:208–213

    Article  PubMed  CAS  Google Scholar 

  50. Gilles R, Guinebretiere JM, Lucidarme O et al (1994) Nonpalpable breast tumors: diagnosis with contrast-enhanced subtraction dynamic MR imaging. Radiology 191:625–631

    PubMed  CAS  Google Scholar 

  51. Boetes C, Strijk SP, Holland R et al (1997) False-negative MR imaging of malignant breast tumors. Eur Radiol 7:1231–1234

    Article  PubMed  CAS  Google Scholar 

  52. Teifke A, Hlawatsch A, Beier T, Werner Vomweg T, Schadmand S et al (2002) Undetected malignancies of the breast: dynamic contrast-enhanced MR imaging at 1.0 T. Radiology 224:881–888

    Article  PubMed  Google Scholar 

  53. Ghai S, Muradali D, Bukhanov K et al (2005) Nonenhancing breast malignancies on MRI: sonographic and pathologic correlation. AJR Am J Roentgenol 185:481–487

    PubMed  Google Scholar 

  54. Hansen S, Grabau DA, Sorensen FB et al (2006) The prognostic value of angiogenesis by Chalkley counting in a confirmatory study design on 836 breast cancer patients. Clin Cancer Res 6:139–146

    Google Scholar 

  55. Chhieng DC, Tabbara SO, Marley EF et al (2003) Microvessel density and vascular endothelial growth factor expression in infiltrating lobular mammary carcinoma. Breast J 9:200–207

    Article  PubMed  CAS  Google Scholar 

  56. Morphopoulos G, Pearson M, Ryder WD et al (1996) Tumour angiogenesis as a prognostic marker in infiltrating lobular carcinoma of the breast. J Pathol 180:44–49

    Article  PubMed  CAS  Google Scholar 

  57. Komatsu S, Lee CJ, Hosokawa Y, Ichikawa D et al (2004) Comparison of intraductal spread on dynamic contrast-enhanced MRI with clinicopathologic features in breast cancer. Jpn J Clin Oncol 34:515–518

    Article  PubMed  Google Scholar 

  58. Ikeda O, Nishimura R, Miyayama H et al (2004) Magnetic resonance evaluation of the presence of an extensive intraductal component in breast cancer. Acta Radiol 45:721–725

    Article  PubMed  CAS  Google Scholar 

  59. Cao Y, Paner GP, Kahn LB et al (2004) Noninvasive carcinoma of the breast: angiogenesis and cell proliferation. Arch Pathol Lab Med 128:893–896

    PubMed  Google Scholar 

  60. Ruiz A, Almenar S, Cerda M et al (2002) Ductal carcinoma in situ of the breast: a comparative analysis of histology, nuclear area, ploidy, and neovascularization provides differentiation between low- and high-grade tumors. Breast J 8:139–144

    Article  PubMed  Google Scholar 

  61. Guidi AJ, Schnitt SJ, Fischer L et al (1997) Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in patients with ductal carcinoma in situ of the breast. Cancer 80:1945–1953

    Article  PubMed  CAS  Google Scholar 

  62. Weinreb JC, Newstead (1995) G.MR imaging of the breast. Radiology 196:593–610

    PubMed  CAS  Google Scholar 

  63. Rubens D, Totterman S, Chacko AK et al (1991) Gadopentetate dimeglumine-enhanced chemical-shift MR imaging of the breast. AJR Am J Roentgenol 157:267–270

    PubMed  CAS  Google Scholar 

  64. Kerslake RW, Carleton PJ, Fox JN et al (1995) Dynamic gradient-echo and fat-suppressed spin-echo contrast-enhanced MRI of the breast. Clin Radiol 50:440–454

    Article  PubMed  CAS  Google Scholar 

  65. Kuhl CK, Mielcareck P, Klaschik S et al (1999) Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology 211:101–110

    PubMed  CAS  Google Scholar 

  66. Matsubayashi R, Matsuo Y, Edakuni G et al (2000) Breast masses with peripheral rim enhancement on dynamic contrast-enhanced MR images: correlation of MR findings with histologic features and expression of growth factors. Radiology 217:841–848

    PubMed  CAS  Google Scholar 

  67. Ahlgren J, Risberg B, Villman K et al (2002) Angiogenesis in invasive breast carcinoma – a prospective study of tumour heterogeneity. Eur J Cancer 38:64–69

    Article  PubMed  CAS  Google Scholar 

  68. Kato T, Kameoka S, Kimura T et al (2001) Angiogenesis as a predictor of long-term survival for 377 Japanese patients with breast cancer. Breast Cancer Res Treat 70:65–74

    Article  PubMed  CAS  Google Scholar 

  69. Santinelli A, Baccarini M, Colanzi P et al (2000) Microvessel quantitation in intraductal and early invasive breast carcinomas. Anal Quant Cytol Histol 22:277–284

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary M. K. Tse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tse, G.M.K., Chaiwun, B., Wong, KT. et al. Magnetic resonance imaging of breast lesions—a pathologic correlation. Breast Cancer Res Treat 103, 1–10 (2007). https://doi.org/10.1007/s10549-006-9352-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-006-9352-3

Keywords

Navigation