Skip to main content

Advertisement

Log in

Overexpression of the wip1 gene abrogates the p38 MAPK/p53/Wip1 pathway and silences p16 expression in human breast cancers

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Wild-type p53-induced phosphatase (Wip1 or PPM1D) is a serine/threonine protein phosphatase expressed under various stress conditions, which selectively inactivates p38 MAPK. The finding that this gene is amplified in association with frequent gain of 17q21–24 in breast cancers supports its role as a driver oncogene. However, the pathogenetic mechanism of the wip1 gene expression in breast carcinogenesis remains to be elucidated. In this study, we examine Wip1 mRNA and protein expression in 20 breast cancer tissues and six cell lines. We additionally investigate the relationship among Wip1, active p38 MAPK, p53, and p16 proteins. In our experiments, Wip1 mRNA was significantly upregulated in 7 of 20 (35%) invasive breast cancer samples. Overexpression of Wip1 was inversely correlated with that of active (phosphor-) p38 MAPK (P = 0.007). Furthermore, Wip1-overexpressing tumors exhibited no or low levels of p16, which normally accumulates upon p38 MAPK activation (P = 0.057). Loss of p16 expression was not associated with hypermethylation of its promoter or loss of heterozygosity on 9p21. Among the 135 primary breast carcinomas further examined, a significant association was found between the Wip1 overexpression and negative staining for p53 (P value = 0.057), indicating that the tumors are wild-type for p53. This is first report showing that Wip1 overexpression abrogates the homeostatic balance maintained through the p38–p53-Wip1 pathway, and contributes to malignant progression by inactivating wild-type p53 and p38 MAPK as well as decreasing p16 protein levels in human breast tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Courjal F, Theillet C (1997) Comparative genomic hybridization analysis of breast tumors with predetermined profiles of DNA amplification. Cancer Res 57:4368–4377

    PubMed  CAS  Google Scholar 

  2. Forozan F, Mahlamaki EH, Monni O, Chen Y, Veldman R, Jiang Y, Gooden GC, Ethier SP, Kallioniemi A, Kallioniemi OP (2000) Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data. Cancer Res 60:4519–4525

    PubMed  CAS  Google Scholar 

  3. Orsetti B, Courjal F, Cuny M, Rodriguez C, Theillet C (1999) 17q21–q25 aberrations in breast cancer: combined allelotyping and CGH analysis reveals 5 regions of allelic imbalance among which two correspond to DNA amplification. Oncogene 18:6262–6270

    Article  PubMed  CAS  Google Scholar 

  4. Orsetti B, Nugoli M, Cervera N, Lasorsa L, Chuchana P, Ursule L, Nguyen C, Redon R, du Manoir S, Rodriguez C, Theillet C (2004) Genomic and expression profiling of chromosome 17 in breast cancer reveals complex patterns of alterations and novel candidate genes. Cancer Res 64:6453–6460

    Article  PubMed  CAS  Google Scholar 

  5. Li J, Yang Y, Peng Y, Austin RJ, van Eyndhoven WG, Nguyen KC, Gabriele T, McCurrach ME, Marks JR, Hoey T, Lowe SW, Powers S ( 2002) Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23. Nat Genet 31:133–134

    Article  PubMed  CAS  Google Scholar 

  6. Fiscella M, Zhang H, Fan S, Sakaguchi K, Shen S, Mercer WE, Vande Woude GF, O’Connor PM, Appella E (1997) Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci U S A 94:6048–6053

    Article  PubMed  CAS  Google Scholar 

  7. Saito-Ohara F, Imoto I, Inoue J, Hosoi H, Nakagawara A, Sugimoto T, Inazawa J (2003) PPM1D is a potential target for 17q gain in neuroblastoma. Cancer Res 63:1876–1883

    PubMed  CAS  Google Scholar 

  8. Hirasawa A, Saito-Ohara F, Inoue J, Aoki D, Susumu N, Yokoyama T, Nozawa S, Inazawa J, Imoto I (2003) Association of 17q21-q24 gain in ovarian clear cell adenocarcinomas with poor prognosis and identification of PPM1D and APPBP2 as likely amplification targets. Clin Cancer Res 9:1995–2004

    PubMed  CAS  Google Scholar 

  9. Yamaguchi H, Minopoli G, Demidov ON, Chatterjee DK, Anderson CW, Durell SR, Appella E (2005) Substrate specificity of the human protein phosphatase 2Cdelta, Wip1. Biochemistry 44:5285–5294

    Article  PubMed  CAS  Google Scholar 

  10. Takekawa M, Adachi M, Nakahata A, Nakayama I, Itoh F, Tsukuda H, Taya Y, Imai K (2000) p53-inducible Wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J 19:6517–6526

    Article  PubMed  CAS  Google Scholar 

  11. Casanovas O, Miro F, Estanyol JM, Itarte E, Agell N, Bachs O (2000) Osmotic stress regulates the stability of cyclin D1 in a p38SAPK2-dependent manner. J Biol Chem 275:35091–35097

    Article  PubMed  CAS  Google Scholar 

  12. Lavoie JN, L’Allemain G, Brunet A, Muller R, Pouyssegur J (1996) Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 271:20608–20616

    Article  PubMed  CAS  Google Scholar 

  13. Bulavin DV, Amundson SA, Fornace AJ (2002) p38 and Chk1 kinases: different conductors for the G(2)/M checkpoint symphony. Curr Opin Genet Dev 12:92–97

    Article  PubMed  CAS  Google Scholar 

  14. Bulavin DV, Saito S, Hollander MC, Sakaguchi K, Anderson CW, Appella E, Fornace AJ Jr (1999) Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J 18:6845–6854

    Article  PubMed  CAS  Google Scholar 

  15. Bulavin DV, Higashimoto Y, Popoff IJ, Gaarde WA, Basrur V, Potapova O, Appella E, Fornace AJ Jr (2001) Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 411:102–107

    Article  PubMed  CAS  Google Scholar 

  16. Lu X, Nguyen TA, Appella E, Donehower LA (2004) Homeostatic regulation of base excision repair by a p53-induced phosphatase: linking stress response pathways with DNA repair proteins. Cell Cycle 15:621–634

    CAS  Google Scholar 

  17. Bulavin DV, Demidov ON, Saito S, Kauraniemi P, Phillips C, Amundson SA, Ambrosino C, Sauter G, Nebreda AR, Fornace AJ Jr, Appella E (2002) Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet 31:210–215

    Article  PubMed  CAS  Google Scholar 

  18. Bulavin DV, Phillips C, Nannenga B, Timofeev O, Donehower LA, Anderson CW, Appella E, Fornace AJ Jr (2004) Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nat Genet 36:343–350

    Article  PubMed  CAS  Google Scholar 

  19. Haller F, Gunawan B, von Heydebreck A, Schwager S, Schulten HJ, Wolf-Salgo J, Langer C, Ramadori G, Sultmann H, Fuzesi L (2005) Prognostic role of E2F1 and members of the CDKN2A network in gastrointestinal stromal tumors. Clin Cancer Res 11:6589–6597

    Article  PubMed  CAS  Google Scholar 

  20. Macaluso M, Montanari M, Cinti C, Giordano A (2005) Modulation of cell cycle components by epigenetic and genetic events. Semin Oncol 32:452–457

    Article  PubMed  CAS  Google Scholar 

  21. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93:9821–9826

    Article  PubMed  CAS  Google Scholar 

  22. Pan E, Pellarin M, Holmes E, Smirnov I, Misra A, Eberhart CG, Burger PC, Biegel JA, Feuerstein BG (2005) Isochromosome 17q is a negative prognostic factor in poor-risk childhood medulloblastoma patients. Clin Cancer Res 11:4733–4740

    Article  PubMed  CAS  Google Scholar 

  23. Koon N, Zaika A, Moskaluk CA, Frierson HF, Knuutila S, Powell SM, El-Rifai W (2004) Clustering of molecular alterations in gastroesophageal carcinomas. Neoplasia 6: 143–149

    Article  PubMed  CAS  Google Scholar 

  24. Choi J, Nannenga B, Demidov ON, Bulavin DV, Cooney A, Brayton C, Zhang Y, Mbawuike IN, Bradley A, Appella E, Donehower LA (2002) Mice Deficient for the Wild-Type p53-Induced Phosphatase Gene (Wip1) Exhibit Defects in Reproductive Organs, Immune Function, and Cell Cycle Control. Mol Cell Biol 22:1094–1105

    Article  PubMed  CAS  Google Scholar 

  25. Silva J, Silva JM, Dominguez G, Garcia JM, Cantos B, Rodriguez R, Larrondo FJ, Provencio M, Espana P, Bonilla F (2003) Concomitant expression of p16INK4a and p14ARF in primary breast cancer and analysis of inactivation mechanisms. J Pathol 199:289–297

    Article  PubMed  CAS  Google Scholar 

  26. Deng Q, Liao R, Wu BL, Sun P (2004) High intensity ras signaling induces premature senescence by activating p38 pathway in primary human fibroblasts. J Biol Chem 279:1050–1059

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Korea Research Foundation Grants funded by the Korea Government (MOEHRD) (KRF-2002-041-E00057 and KRF-2002-C00065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jene Choi.

Additional information

Eunsil Yu and Yeon Sun Ahn contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, E., Ahn, Y.S., Jang, S.J. et al. Overexpression of the wip1 gene abrogates the p38 MAPK/p53/Wip1 pathway and silences p16 expression in human breast cancers. Breast Cancer Res Treat 101, 269–278 (2007). https://doi.org/10.1007/s10549-006-9304-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-006-9304-y

Keywords

Navigation