Breast Cancer Research and Treatment

, Volume 94, Issue 2, pp 161–169 | Cite as

Anti-estrogenic Effects of Conjugated Linoleic Acid through Modulation of Estrogen Receptor Phosphorylation

  • Jingbo Liu
  • Neil SidellEmail author


We previously showed that conjugated linoleic acids (CLA) can inhibit transcriptional activation mediated by estrogen response elements (EREs) and that this activity can, at least in part, account for the reported anti-tumor effects of these compounds on breast cancer cells. Using estrogen receptor positive (ER+) MCF-7 cells, we now demonstrate that CLA inhibited both the transactivation of artificial reporter constructs driven by canonical EREs, and the expression of endogenous progesterone receptors, a gene which is transcriptionally regulated by estrogen through novel ER-binding sites. This inhibition was accompanied by downregulation of ERα expression and decreased ERα–ERE binding activity. These effects on ERα were not causally linked since transfection of an ERα expression plasmid in MCF-7 cells failed to antagonize CLA downregulation of ERα–ERE binding. Immunoprecipitation/Western blot studies revealed that CLA dose-dependently suppressed the degree of phosphorylation of ERα, a modification known to inhibit receptor–ERE interactions. As a mechanism that may account for this induced dephosphorylation of ERα in MCF-7, we found that CLA specifically stimulated protein phosphatase 2A (PP2A) activity. Experiments using the PP2A inhibitor okadaic acid (OA) showed that OA antagonized both the dephosphorylation effects of CLA on ERα and its inhibition of ERα–ERE binding. These results provide evidence that the anti-estrogenic activity of CLA is caused by inducing the dephosphorylation of ERα through stimulation of PP2A activity.


breast cancer conjugated linoleic acid estrogen receptor phosphorylation protein phosphatase 2A 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Palombo, JD, Ganguly, A, Bistrian, BR, Menard, MP 2002The antiproliferative effects of biologically active isomers of conjugated linoleic acid on human colorectal and prostatic cancer cellsCancer Lett177163172CrossRefPubMedGoogle Scholar
  2. 2.
    Belury, MA 2002Dietary conjugated linoleic acid in health: physiological effects and mechanisms of actionAnnu Rev Nutr22505531CrossRefPubMedGoogle Scholar
  3. 3.
    Cho, HJ, Kim, WK, Kim, EJ, Jung, KC, Park, S, Lee, HS, Tyner, AL, Park, JH 2003Conjugated linoleic acid inhibits cell proliferation and ErbB3 signaling in HT-29 human colon cell lineAm J Physiol Gastroint Liver Physiol284G996G1005Google Scholar
  4. 4.
    Shultz, TD, Chew, BP, Seaman, WR 1992Differential stimulatory and inhibitory responses of human MCF-7 breast cancer cells to linoleic acid and conjugated linoleic acid in cultureAnticancer Res1221432145PubMedGoogle Scholar
  5. 5.
    Majumder, B, Wahle, KW, Moir, S, Schofield, A, Choe, SN, Farquharson, A, Grant, I, Heys, SD 2002Conjugated linoleic acids (CLAs) regulate the expression of key apoptotic genes in human breast cancer cellsFASEB J1614471449PubMedGoogle Scholar
  6. 6.
    Ochoa, JJ, Farquharson, AJ, Grant, I, Moffat, LE, Heys, SD, Wahle, KW 2004Conjugated linoleic acids (CLAs) decrease prostate cancer cell proliferation: different molecular mechanisms for cis-9, trans-11 and trans-10, cis-12 isomersCarcinogenesis2511181191CrossRefGoogle Scholar
  7. 7.
    Kim, EJ, Kang, IJ, Cho, HJ, Kim, WK, Ha, YL, Park, JH 2003Conjugated linoleic acid downregulates insulin-like growth factor-I receptor levels in HT-29 human colon cancer cellsJ Nutr13326752681PubMedGoogle Scholar
  8. 8.
    Tanmahasamut, P, Liu, J, Hendry, LB, Sidell, N 2004Conjugated linoleic acid blocks estrogen signaling in human breast cancer cellsJ Nutr134674680PubMedGoogle Scholar
  9. 9.
    Durgam, VR, Fernandes, G 1997The growth inhibitory effect of conjugated linoleic acid on MCF-7 cells is related to estrogen response systemCancer Lett116121130CrossRefPubMedGoogle Scholar
  10. 10.
    Weigel, NL 1996Steroid hormone receptors and their regulation by phosphorylationBiochem J319657667PubMedGoogle Scholar
  11. 11.
    Auricchio, F, Migliaccio, A, Rotondi, A 1981Inactivation of oestrogen receptor in vitro by nuclear dephosphorylationBiochem J194569574PubMedGoogle Scholar
  12. 12.
    Denton, RR, Koszewski, NJ, Notides, AC 1992Estrogen receptor phosphorylation: hormonal dependence and consequence on specific DNA bindingJ Biol Chem26772637268PubMedGoogle Scholar
  13. 13.
    Tzeng, DZ, Klinge, CM 1996Phosphorylation of purified estradiol- liganded estrogen receptor by caseine kinase II increases estrogen response element binding but does not alter ligand stabilityBiochem Biophys Res Commun223554560CrossRefPubMedGoogle Scholar
  14. 14.
    Horwitz, KB, McGuire, WL 1978Nuclear mechanisms of estrogen action: effects of estradiol and anti-estrogens on estrogen receptors and nuclear receptor processingJ Biol Chem25381858191PubMedGoogle Scholar
  15. 15.
    Weigel, NL, Zhang, Y 1998Ligand-independent activation of steroid hormone receptorsJ Mol Med76469479CrossRefPubMedGoogle Scholar
  16. 16.
    Washburn, T, Hocutt, A, Brautigan, DL, Korach, KS 1991Uterine estrogen receptor in vivo: phosphorylation of nuclear specific forms on serine residuesMol Endocrinol5235242PubMedGoogle Scholar
  17. 17.
    Joel, PB, Traish, AM, Lannigan, DA 1995Estradiol and phorbol ester cause phosphorylation of serine 118 in the human estrogen receptorMol Endocrinol910411052CrossRefPubMedGoogle Scholar
  18. 18.
    Ali, S, Metzger, D, Bornert, JM, Chambon, P 1993Modulation of transcriptional activation by ligand-dependent phosphorylation of the human oestrogen receptor A/B regionEMBO J1211531160PubMedGoogle Scholar
  19. 19.
    Arnold, SF, Obourn, JD, Jaffe, H, Notides, AC 1995Phosphorylation of the human estrogen receptor by mitogen-activated protein kinase and casein kinase. II. Consequence on DNA bindingJ Steroid Biochem Mol Biol55163172CrossRefPubMedGoogle Scholar
  20. 20.
    Bunone, G, Briand, PA, Miksicek, RJ, Picard, D 1996Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylationEMBO J1521742183PubMedGoogle Scholar
  21. 21.
    Kato, S, Endoh, H, Masuhiro, Y, Kitamoto, T, Uchiyama, S, Sasaki, H, Masushige, S, Gotoh, Y, Nishida, E, Kawashima, H 1995Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinaseScience27014911494PubMedGoogle Scholar
  22. 22.
    Lu, Q, Surks, HK, Ebling, H, Baur, WE, Brown, D, Pallas, DC, Karas, RH 2003Regulation of estrogen receptor alpha-mediated transcription by a direct interaction with protein phosphatase 2AJ Biol Chem27846394645CrossRefPubMedGoogle Scholar
  23. 23.
    Wera, S, Hemmings, BA 1995Serine/threonine protein phosphatasesBiochem J3111729PubMedGoogle Scholar
  24. 24.
    Janssens, V, Goris, J 2001Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signallingBiochem J353417439CrossRefPubMedGoogle Scholar
  25. 25.
    Zolnierowicz, S 2000Type 2A protein phosphatase, the complex regulator of numerous signaling pathwaysBiochem Pharmacol6012251235CrossRefPubMedGoogle Scholar
  26. 26.
    Gopalakrishna, R, Gundimeda, U, Fontana, JA, Clarke, R 1999Differential distribution of protein phosphatase 2A in human breast carcinoma cell lines and its relation to estrogen receptor statusCancer Lett136143151CrossRefPubMedGoogle Scholar
  27. 27.
    Seiler, TA, Walker, P, Martinez, E, Merillat, AM, Givel, F, Wahli, W 1986Identification of estrogen-responsive DNA sequences by transient expression experiments in a human breast cancer cell lineNucleic Acids Res1487558770PubMedGoogle Scholar
  28. 28.
    Nunez, SB, Medin, JA, Braissant, O, Kemp, L, Wahli, W, Ozato, K, Segars, JH 1997Retinoid X receptor and peroxisome proliferator-activated receptor activate an estrogen responsive gene independent of the estrogen receptorMol Cell Endocrinol1272740CrossRefPubMedGoogle Scholar
  29. 29.
    Caruccio, L, Banerjee, R 1999An efficient method for simultaneous isolation of biologically active transcription factors and DNAJ Immunol Meth230110CrossRefGoogle Scholar
  30. 30.
    Juge-Aubry, C, Pernin, A, Favez, T, Burger, AG, Wahli, W, Meier, CA, Desvergne, B 1997DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements. Importance of the 5′-flanking regionJ Biol Chem2722525225259CrossRefPubMedGoogle Scholar
  31. 31.
    Sawatsri, S, Samid, D, Malkapuram, S, Sidell, N 2001Inhibition of estrogen dependent breast cell responses with phenylacetateInt J Cancer93687692CrossRefPubMedGoogle Scholar
  32. 32.
    Fink, R, Clemens, MR, Marjot, DH, Patsalos, P, Cawood, P, Norden, AG, Iversen, SA, Dormandy, TL 1985Increased free-radical activity in alcoholicsLancet2291294CrossRefPubMedGoogle Scholar
  33. 33.
    Szebeni, J, Eskelson, C, Sampliner, R, Hartmann, B, Griffin, J, Dormandy, T, Watson, RR 1986Plasma fatty acid pattern including diene-conjugated linoleic acid in ethanol users and patients with ethanol-related liver diseaseMetab Clin Exp Res6647650Google Scholar
  34. 34.
    Petridou, A, Mougios, V, Sagredos, A 2003Supplementation with CLA: isomer incorporation into serum lipids and effect on body fat of womenLipids38805811PubMedGoogle Scholar
  35. 35.
    Petz, LN, Ziegler, YS, Loven, MA, Nardulli, AM 2002Estrogen receptor α and activating protein-1 mediate estrogen responsiveness of the progesterone receptor gene in MCF-7 breast cancer cellsEndocrinology14345834591CrossRefPubMedGoogle Scholar
  36. 36.
    Petz, LN, Nardulli, AM 2000Sp1 binding sites and an estrogen response element half-site are involved in regulation of the human progesterone receptor A promoterMol Endocrinol14972985CrossRefPubMedGoogle Scholar
  37. 37.
    Strobl, JS, Kirkwood, KL, Lantz, TK, Lewine, MA, Peterson, VA, Worley, JF,3rd 1990Inhibition of human breast cancer cell proliferation in tissue culture by the neuroleptic agents pimozide and thioridazineCancer Res5053995405PubMedGoogle Scholar
  38. 38.
    Strobl, JS, Peterson, VA 1992Tamoxifen-resistant human breast cancer cell growth: inhibition by thioridazine, pimozide and the calmodulin antagonist, W-13J Pharmacol Exp Ther263186193PubMedGoogle Scholar
  39. 39.
    Wang, X, Kilgore, MW 2002Signal cross-talk between estrogen receptor alpha and beta and the peroxisome proliferator-activated receptor gamma1 in MDA-MB-231 and MCF-7 breast cancer cellsMol Cell Endocrinol194123133CrossRefPubMedGoogle Scholar
  40. 40.
    Favre, B, Turowski, P, Hemmings, BA 1997Differential inhibition and posttranslational modification of protein phosphatase 1 and 2A in MCF7 cells treated with calyculin-A, okadaic acid, and tautomycinJ Biol Chem2721385613863CrossRefPubMedGoogle Scholar
  41. 41.
    Fathi, AR, Krautheim, A, Lucke, S, Becker, K, Juergen, SH 2002Nonradioactive technique to measure protein phosphatase 2A-like activity and its inhibition by drugs in cell extractsAnal Biochem310208214CrossRefPubMedGoogle Scholar
  42. 42.
    Asai, D, Tahara, Y, Nakai, M, Yakabe, Y, Takatsuki, M, Nose, T, Shinmyozu, T, Shimohigashi, Y 2000Structural essentials of xenoestrogen dialkyl phthalates to bind to the estrogen receptorsToxicol Lett11818CrossRefPubMedGoogle Scholar
  43. 43.
    Promega Technical Bulletin No. 218 Promega, Madison, WI, USAGoogle Scholar
  44. 44.
    Muzio, G, Maggiora, M, Trombetta, A, Martinasso, G, Reffo, P, Colombatto, S, Canuto, RA 2003Mechanisms involved in growth inhibition induced by clofibrate in hepatoma cellsToxicology187149159CrossRefPubMedGoogle Scholar
  45. 45.
    Yu, Y, Correll, PH, Vanden Heuvel, JP 2002Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages: evidence for a PPAR gamma-dependent mechanismBiochim Biophys Acta15818999PubMedGoogle Scholar
  46. 46.
    McCarty, MF 2000Activation of PPAR gamma may mediate a portion of the anticancer activity of conjugated linoleic acidMed Hypoth55187188CrossRefGoogle Scholar
  47. 47.
    Jiang, WG, Douglas-Jones, A, Mansel, RE 2003Expression of peroxisome-proliferator activated receptor-gamma (PPARgamma) and the PPARgamma co-activator, PGC-1, in human breast cancer correlates with clinical outcomesInt J Cancer106752757CrossRefPubMedGoogle Scholar
  48. 48.
    Ruiz, PA, Kim, SC, Sartor, RB, Haller, D 200415-deoxy-Δ12, 14-prostaglandin J2-mediated ERK signaling inhibits Gram negative bacteria-induced RelA phosphorylation and IL-6 gene expression in intestinal epithelial cells through modulation of protein phosphatase 2A activityJ Biol Chem2793610336111CrossRefPubMedGoogle Scholar
  49. 49.
    Altiok, S, Xu, M, Spiegelman, BM 1997PPAR gamma induces cell cycle withdrawal: inhibition of E2F/DP DNA-binding activity via down-regulation of PP2AGenes Dev1119871998PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Gynecology and Obstetrics, Division of ResearchEmory University School of MedicineAtlantaUSA

Personalised recommendations