Skip to main content

Advertisement

Log in

Cyclic Induction of Senescence with Intermittent AZT Treatment Accelerates both Apoptosis and Telomere Loss

  • Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Background. 3′-azido-2′,3′-dideoxythymidine (AZT) is phosphorylated intracellularly to 3′-azido-3′-deoxythymidine-5-triphosphate (AZT-TP), which is incorporated into telomeric DNA, thereby blocking chain elongation. AZT is also known to inhibit reverse transcriptase, as well as other cellular enzymes including DNA polymerase γ, thymidine kinase, and telomerase.

Methods. We induced cancer cell senescence by treating MCF-7 cells with AZT in dosages of IC10 and IC20 for an extended period (about 120 population doublings (PD)). We then investigated the sequential changes in cellular growth, expression of telomerase subunits and transcription factors (c-Myc, Mad1), telomerase activity and telomere length.

Results. Senescence, apoptosis, growth delay, inhibition of telomerase activity and shortening of telomere length were all observed in a dose- and time-dependent manner. After the onset of senescence, the apoptosis rate increased slowly during early PDs. In contrast to senescence, the apoptotic rate showed little change after AZT removal, while it increased suddenly and significantly in a dose-dependent manner upon the second introduction of AZT. Continuous shortening of the telomeric length was observed with AZT, and, upon re-exposure to AZT, shortening of the telomere occurred more rapidly than with first exposure. Of the telomerase subunits, telomerase reverse transcriptase (hTERT) and c-Myc were the first to show a reduction in activity after AZT treatment, followed by changes in hTER , Mad1 and hTEP-1.

Conclusion. Cyclic treatment with AZT initially suppressed hTERT and c-Myc, followed by suppression of hTER, Mad1 and hTEP-1. Furthermore, the treatment accelerated both telomere loss and apoptosis, even when administered at a senescence-inducing dosage level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AZT:

3′-azido-2′,3′-dideoxythymidine

AZT-TP:

3-azido-3-deoxythymidine-5-triphosphate

CHAPS:

3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate

EGTA:

ethylene glycol-bis(β-aminoethyl Ether)

hTER:

telomerase RNA

hTERT:

telomerase reverse transcriptase

TEP:

telomerase-associated protein

TRAP:

telomeric repeat amplification protocol

References

  1. CB Harley (1991) ArticleTitleTelomere loss: mitotic clock or genetic time bomb? Muta Res 256 271–282

    Google Scholar 

  2. EH Blackburn (1991) ArticleTitleStructure and function of telomeres Nature 350 569–573 Occurrence Handle10.1038/350569a0 Occurrence Handle1708110

    Article  PubMed  Google Scholar 

  3. J Campisi (1997) ArticleTitleThe biology of replicative senescence Eur J Cancer 33 703–709 Occurrence Handle10.1016/S0959-8049(96)00058-5 Occurrence Handle9282108

    Article  PubMed  Google Scholar 

  4. EH Blackburn (1992) ArticleTitleTelomerase Annu Rev Biochem 61 113–129 Occurrence Handle10.1146/annurev.bi.61.070192.000553 Occurrence Handle1497307

    Article  PubMed  Google Scholar 

  5. J Feng WD Funk SS Wang SL Weinrich AA Avilion CP Chiu RR Adams E Chang RC Allssop J Yu (1995) ArticleTitleThe RNA component of human telomerase Science 269 1236–1241 Occurrence Handle7544491

    PubMed  Google Scholar 

  6. M Meyerson CM Counter EN Eaton LW Ellisen P Steiner SD Caddle L Ziagura RL Beijersbergen MJ Davidoff Q Liu S Bacchetti DA Haber RA Weinberg (1997) ArticleTitlehEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization Cell 90 785–795 Occurrence Handle10.1016/S0092-8674(00)80538-3 Occurrence Handle9288757

    Article  PubMed  Google Scholar 

  7. TM Nakamura GB Morin KB Chapman SL Weinrich WH Andrews J Linger CB Harley TR Cech (1997) ArticleTitleTelomerase catalytic subunit homologs from fission yeast and human Science 277 955–959 Occurrence Handle10.1126/science.277.5328.955 Occurrence Handle9252327

    Article  PubMed  Google Scholar 

  8. J Nakayama M Saito H Nakamura A Matsuura F Ishikawa (1997) ArticleTitleTLP1: a gene encoding a protein component of mammalian telomerase is a novel member of WD repeats family Cell 88 875–884 Occurrence Handle10.1016/S0092-8674(00)81933-9 Occurrence Handle9118230

    Article  PubMed  Google Scholar 

  9. L Harrington T McPhail V Mar W Zhow R Oulton MB Bass I Arruda MO Robinson (1997) ArticleTitleA mammalian telomerase-associated protein Science 275 973–977 Occurrence Handle10.1126/science.275.5302.973 Occurrence Handle9020079

    Article  PubMed  Google Scholar 

  10. L Harrington W Zhou T McPhail R Oulton DS Yeung V Mar MB Bass MO Robinson (1997) ArticleTitleHuman telomerase contains evolutionalarily conserved catalytic and structural subunits Genes Dev 11 3109–3115 Occurrence Handle9389643

    PubMed  Google Scholar 

  11. NW Kim MA Piatyszek P Prowse CB Harley MD West PL Ho GM Coviello WE Wright SL Weinrich JW Shay (1994) ArticleTitleSpecific association of human telomerase activity with immortal cells and cancer Science 266 2011–2015 Occurrence Handle7605428

    PubMed  Google Scholar 

  12. A Killian DD Bowtell HE Abud GR Hime DJ Venter PK Keese EL Duncan RR Reddel RA Jefferson (1997) ArticleTitleIsolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types Hum Mol Genet 6 2011–2019 Occurrence Handle10.1093/hmg/6.12.2011 Occurrence Handle9328464

    Article  PubMed  Google Scholar 

  13. H Li LL Zhao JW Funder JP Liu (1997) ArticleTitleProtein phosphatase 2A inhibits nuclear telomerase activity in human breast cancer cells J Biol Chem 272 669–677

    Google Scholar 

  14. J Wang LY Xie S Allan D Beach GJ Hannon (1998) ArticleTitleMyc activates telomerase Genes Dev 12 1769–1774 Occurrence Handle9637678

    PubMed  Google Scholar 

  15. S Oh YH Song J Yim TK Kim (2000) ArticleTitleIdentification of Mad as a repressor of the human telomerase (hTERT) gene Oncogene 19 1485–1490 Occurrence Handle10.1038/sj.onc.1203439 Occurrence Handle10723141

    Article  PubMed  Google Scholar 

  16. YS Cong S Bacchetti (2000) ArticleTitleHistone deacetylation is involved in the transcriptional repression of hTERT in normal human cells J Biol Chem 275 35665–35668 Occurrence Handle10.1074/jbc.C000637200 Occurrence Handle10986277

    Article  PubMed  Google Scholar 

  17. PA Furman JA Fyfe MH St. Clair K Weinhold JL Rideout GA Freeman SN Lehrman DP Bolognesi S Broder H Mitsuya (1986) ArticleTitlePhosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human immunodeficiency virus reverse transcriptase Proc Natl Acad Sci USA 83 8333–8337 Occurrence Handle2430286

    PubMed  Google Scholar 

  18. JP Sommadossi R Carlisle Z Zhou (1989) ArticleTitleCellular Pharmacology of 3′-azido-3′-deoxythymidine with evidence of incorporation into DNA of human bone marrow cells Mol Pharmacol 36 9–14 Occurrence Handle2747633

    PubMed  Google Scholar 

  19. RP Agarwal AK Mian (1991) ArticleTitleThymidine and zidovudine metabolism in chronically zidovudine-exposed cells in vitro Biochem Pharmacol 42 905–911 Occurrence Handle10.1016/0006-2952(91)90052-7 Occurrence Handle1867645

    Article  PubMed  Google Scholar 

  20. C Strahl EH Blackburn (1994) ArticleTitleThe effects of nuceloside analogs on telomerase and telomeres in Tetrahymena Nucleic Acid Res 22 893–900 Occurrence Handle8152919

    PubMed  Google Scholar 

  21. PA Furman DW Barry (1988) ArticleTitleSpectrum of antiviral activity and mechanism of action of zidovudine Am J Med 85 176–181 Occurrence Handle3044082

    PubMed  Google Scholar 

  22. J Carmichael WG DeGraff AF Gazdar JD Minna JB Mitchell (1987) ArticleTitleEvaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of radiosensitivity Cancer Res 47 943–946 Occurrence Handle3802101

    PubMed  Google Scholar 

  23. GP Dimri X Lee G Basile M Acosta G Scott C Roskelley EE Medrano M Linskens I Rubelj O Pereira-Smith (1995) ArticleTitleA biomarker that identifies senescence human cells in culture and in aging skin in vivo Proc Nat Acad Sci USA 9 9363–9367

    Google Scholar 

  24. S Muthukkumar P Nair SF Sells NG Maddiwar RJ Jacob VM Rangnekar (1995) ArticleTitleRole of EGR-1 in thapsigargin-inducible apoptosis in the melanoma cell line A375-C6 Mol Cell Biol 15 6262–6272 Occurrence Handle7565779

    PubMed  Google Scholar 

  25. NW Kim F Wu (1997) ArticleTitleAdvances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP) Nucleic Acids Res 25 2595–2597 Occurrence Handle10.1093/nar/25.13.2595 Occurrence Handle9185569

    Article  PubMed  Google Scholar 

  26. GA Ulaner JF Hu TH Vu LC Giudice AR Hoffman (1998) ArticleTitleTelomerase activity in human development is regulated by human telomerase reverse transcriptase (hTERT) transcription and by alternate splicing of hTERT transcripts Cancer Res 58 4168–4172 Occurrence Handle9751630

    PubMed  Google Scholar 

  27. JG Alfonso D Pollevick A Casttensson E Jazin AC Frasch (2002) ArticleTitleAnalysis of gene expression in the rat hippocampus using real time PCR reveals high inter-individual variation in mRNA expression levels J Neurosc Res 15 225–234 Occurrence Handle10.1002/jnr.10105

    Article  Google Scholar 

  28. CB Harley AB Futcher CW Greider (1990) ArticleTitleTelomere shorten during aging of human fibroblasts Nature 345 458–460 Occurrence Handle10.1038/345458a0 Occurrence Handle2342578

    Article  PubMed  Google Scholar 

  29. AM Tejera DF Alonso DE Gomez OA Olivero (2001) ArticleTitleChronic in vitro exposure to 3′-azido-2′3′-dideoxythymidine induces senescence and apoptosis and reduces tumorigenicity of metastatic mouse mammary tumor cells Breast Cancer Res Treat 65 93–99 Occurrence Handle10.1023/A:1006477730934 Occurrence Handle11261835

    Article  PubMed  Google Scholar 

  30. V Gorbunova A Seluanov OM Pereira-Smith (2003) ArticleTitleEvidence that high telomerase activity may induce a senescent-like growth arrest in human fibroblasts J Biol Chem 278 7692–7698 Occurrence Handle10.1074/jbc.M212944200 Occurrence Handle12496279

    Article  PubMed  Google Scholar 

  31. K Masutomi EY Yu S Khurts I Ben-Porath JL Currier GB Metz MW Brooks S Kaneko S Murakami JA DeCaprio RA Weinberg SA Stewart WC Hahn (2003) ArticleTitleTelomerase maintains telomere structure in normal human cells Cell 114 241–253 Occurrence Handle10.1016/S0092-8674(03)00550-6 Occurrence Handle12887925

    Article  PubMed  Google Scholar 

  32. KS Hathcock MT Hemann KK Opperman MA Strong CW Greider RJ Hodes (2002) ArticleTitleHaplo insufficiency of mTR results in defects in telomere elongation Proc Natl Acad Sci USA 99 3597–3602 Occurrence Handle10.1073/pnas.012549799 Occurrence Handle11904422

    Article  PubMed  Google Scholar 

  33. RC Allsopp S Cheshier IL Weissman (2001) ArticleTitleTelomere shortening accompanies increased cell cycle activity during serial transplantation of hematopoietic stem cells J Exp Med 193 917–924 Occurrence Handle10.1084/jem.193.8.917 Occurrence Handle11304552

    Article  PubMed  Google Scholar 

  34. DE Gomez AM Tejera OA Olivero (1998) ArticleTitleIrreversible telomere shortening by 3′-azido-2′,3′-deoxythymidine (AZT) treatment Biochem Biophys Res Commun 246 107–110 Occurrence Handle10.1006/bbrc.1998.8555 Occurrence Handle9600076

    Article  PubMed  Google Scholar 

  35. T Yajima A Yagihashi H Kameshima D Kobayashi K Hirata N Watanabe (2001) ArticleTitleTelomerase reverse transcriptase and telomeric-repeat binding factor protein 1 as regulators of telomerase activity in pancreatic cancer cells Br J Cancer 85 752–757 Occurrence Handle10.1054/bjoc.2001.1954 Occurrence Handle11531263

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Cheol Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, H.J., Rha, S.Y., Jeung, H. et al. Cyclic Induction of Senescence with Intermittent AZT Treatment Accelerates both Apoptosis and Telomere Loss. Breast Cancer Res Treat 93, 227–236 (2005). https://doi.org/10.1007/s10549-005-5156-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-005-5156-0

Key words

Navigation