Alonso-Frech F, Zamarbide I, Alegre M, Rodríguez-Oroz MC, Guridi J, Manrique M et al (2006) Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson’s disease. Brain 129:1748–1757. https://doi.org/10.1093/brain/awl103
CAS
Article
PubMed
Google Scholar
Bočková M, Rektor I (2019) Impairment of brain functions in Parkinson’s disease reflected by alterations in neural connectivity in EEG studies: a viewpoint. Clin Neurophysiol 130:239–247. https://doi.org/10.1016/j.clinph.2018.11.013
Article
PubMed
Google Scholar
Bonnefond M, Kastner S, Jensen O (2017) Communication between brain areas based on nested oscillations. eNeuro. https://doi.org/10.1523/ENEURO.0153-16.2017
Article
PubMed
PubMed Central
Google Scholar
Brown P, Williams D (2005) Basal ganglia local field potential activity: character and functional significance in the human. Clin Neurophysiol 116:2510–2519. https://doi.org/10.1016/j.clinph.2005.05.009
Article
PubMed
Google Scholar
Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 21:1033–1038. https://doi.org/10.1523/jneurosci.21-03-01033.2001
CAS
Article
PubMed
PubMed Central
Google Scholar
Bruns A, Eckhorn R (2004) Task-related coupling from high- to low-frequency signals among visual cortical areas in human subdural recordings. Int J Psychophysiol 51:97–116
Article
PubMed
Google Scholar
Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE et al (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 313:1626–1628. https://doi.org/10.1126/science.1128115
CAS
Article
PubMed
PubMed Central
Google Scholar
Castrioto A, Meaney C, Hamani C, Mazzella F, Poon YY, Lozano AM et al (2011) The Dominant-STN phenomenon in bilateral STN DBS for Parkinson’s disease. Neurobiol Dis 41:131–137. https://doi.org/10.1016/j.nbd.2010.08.029
Article
PubMed
Google Scholar
Cavanagh JF, Wiecki TV, Cohen MX, Figueroa CM, Samanta J, Sherman SJ, Frank MJ (2011) Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. Nat Neurosci 14:1462–1467. https://doi.org/10.1038/nn.2925
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen CC, Hsu YT, Chan HL, Chiou SM, Tu PH, Lee ST et al (2010) Complexity of subthalamic 13-35 Hz oscillatory activity directly correlates with clinical impairment in patients with Parkinson’s disease. Exp Neurol 224:234–240. https://doi.org/10.1016/j.expneurol.2010.03.015
Article
PubMed
Google Scholar
Damborská A, Brázdil M, Rektor I, Janoušová E, Chládek J, Kukleta M (2012) Late divergence of target and nontarget ERPs in a visual oddball task. Physiol Res 61:307–318
Article
PubMed
Google Scholar
Damborská A, Roman R, Brázdil M, Rektor I, Kukleta M (2016) Post-movement processing in visual oddball task—evidence from intracerebral recording. Clin Neurophysiol 127:1297–1306. https://doi.org/10.1016/j.clinph.2015.08.014
Article
PubMed
Google Scholar
De Hemptinne C, Ryapolova-Webb ES, Air EL, Garcia PA, Miller KJ, Ojemann JG et al (2013) Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc Natl Acad Sci USA 110:4780–4785
Article
PubMed
PubMed Central
Google Scholar
Engel AK, Fries P (2010) Beta-band oscillations-signalling the status quo? Curr Opin Neurobiol 20:156–165. https://doi.org/10.1016/j.conb.2010.02.015
CAS
Article
PubMed
Google Scholar
Fogelson N, Williams D, Tijssen M, Van Bruggen G, Speelman H, Brown P (2006) Different functional loops between cerebral cortex and the subthalmic area in Parkinson’s disease. Cereb Cortex 16:64–75. https://doi.org/10.1093/cercor/bhi084
Article
PubMed
Google Scholar
Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480. https://doi.org/10.1016/j.tics.2005.08.011
Article
PubMed
Google Scholar
Germano IM, Gracies JM, Weisz DJ, Tse W, Koller WC, Olanow CW (2004) Unilateral stimulation of the subthalamic nucleus in Parkinson disease: a double-blind 12-month evaluation study. J Neurosurg 101:36–42. https://doi.org/10.3171/jns.2004.101.1.0036
Article
PubMed
Google Scholar
Hammond C, Bergman H, Brown P (2007) Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci 30:357–364. https://doi.org/10.1016/j.tins.2007.05.004
CAS
Article
PubMed
Google Scholar
Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2010.00186
Article
PubMed
PubMed Central
Google Scholar
Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ (2000) Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin Neurophysiol 111:1745–1758. https://doi.org/10.1016/S1388-2457(00)00386-2
CAS
Article
PubMed
Google Scholar
Kelley R, Flouty O, Emmons EB, Kim Y, Kingyon J, Wessel JR et al (2018) A human prefrontal-subthalamic circuit for cognitive control. Brain 141:205–216
Article
PubMed
Google Scholar
Kronland-Martinet R, Morlet J, Grossmann A (1987) Analysis of sound patterns through walvelet transforms. Int J Pattern Recognit Artif Intell 1:273–302
Article
Google Scholar
Kukleta M, Bob P, Brázdil M, Roman R, Rektor I (2009) Beta 2-band synchronization during a visual oddball task. Physiol Res 58:725–732
CAS
Article
PubMed
Google Scholar
Kukleta M, Bob P, Brázdil M, Roman R, Rektor I (2010) The level of frontal-temporal beta-2 band EEG synchronization distinguishes anterior cingulate cortex from other frontal regions. Conscious Cogn 19:879–886. https://doi.org/10.1016/j.concog.2010.04.007
CAS
Article
PubMed
Google Scholar
Kukleta M, Damborská A, Turak B, Louvel J (2017) Evoked potentials in final epoch of self-initiated hand movement: a study in patients with depth electrodes. Int J Psychophysiol 117:119–125. https://doi.org/10.1016/j.ijpsycho.2017.05.004
Article
PubMed
Google Scholar
Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE (2008) Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320:110–113. https://doi.org/10.1126/science.1154735
CAS
Article
PubMed
Google Scholar
Lalo E, Thobois S, Sharott A, Polo G, Mertens P, Pogosyan A, Brown P (2008) Patterns of bidirectional communication between cortex and basal ganglia during movement in patients with Parkinson disease. J Neurosci 28:3008–3016. https://doi.org/10.1523/JNEUROSCI.5295-07.2008
CAS
Article
PubMed
PubMed Central
Google Scholar
Lisman JE, Jensen O (2013) The theta-gamma neural code. Neuron 77:1002–1016
CAS
Article
PubMed
PubMed Central
Google Scholar
Litvak V, Jha A, Eusebio A, Oostenveld R, Foltynie T, Limousin P et al (2011) Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson’s disease. Brain 134:359–374. https://doi.org/10.1093/brain/awq332
Article
PubMed
Google Scholar
Marsden JF, Limousin-Dowsey P, Ashby P, Pollak P, Brown P (2001) Subthalamic nucleus, sensorimotor cortex and muscle interrelationships in Parkinson’s disease. Brain 124:378–388. https://doi.org/10.1093/brain/124.2.378
CAS
Article
PubMed
Google Scholar
Moran A, Bergman H, Israel Z, Bar-Gad I (2008) Subthalamic nucleus functional organization revealed by parkinsonian neuronal oscillations and synchrony. Brain 131:3395–3409. https://doi.org/10.1093/brain/awn270
CAS
Article
PubMed
Google Scholar
Onslow ACE, Bogacz R, Jones MW (2011) Quantifying phase–amplitude coupling in neuronal network oscillations. Prog Biophys Mol Biol 105:49–57
Article
PubMed
Google Scholar
Oswal A, Brown P, Litvak V (2013a) Synchronized neural oscillations and the pathophysiology of Parkinson’s disease. Curr Opin Neurol 26:662–670. https://doi.org/10.1097/WCO.0000000000000034
Article
PubMed
Google Scholar
Oswal A, Brown P, Litvak V (2013b) Movement related dynamics of subthalmo-cortical alpha connectivity in Parkinson’s disease. Neuroimage 70:132–142. https://doi.org/10.1016/j.neuroimage.2012.12.041
Article
PubMed
Google Scholar
Perrin F, Pernier J, Bertrand O, Echallier JF (1989) Spherical splines for scalp potential and current density mapping. Electroencephalogr Clin Neurophysiol 72:184–187. https://doi.org/10.1016/0013-4694(89)90180-6
CAS
Article
PubMed
Google Scholar
Saalmann YB, Pinsk MA, Wang L, Li X, Kastner S (2012) The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337:753–756
CAS
Article
PubMed
PubMed Central
Google Scholar
Sharott A, Gulberti A, Zittel S, Tudor-Jones AA, Fickel U, Münchau A et al (2014) Activity parameters of subthalamic nucleus neurons selectively predict motor symptom severity in Parkinson’s disease. J Neurosci 34:6273–6285. https://doi.org/10.1523/JNEUROSCI.1803-13.2014
CAS
Article
PubMed
PubMed Central
Google Scholar
Shreve LA, Velisar A, Malekmohammadi M, Koop MM, Trager M, Quinn EJ et al (2017) Subthalamic oscillations and phase amplitude coupling are greater in the more affected hemisphere in Parkinson’s disease. Clin Neurophysiol 128:128–137. https://doi.org/10.1016/j.clinph.2016.10.095
Article
PubMed
Google Scholar
Slowinski JL, Putzke JD, Uitti RJ, Lucas JA, Turk MF, Kall BA, Wharen RE (2007) Unilateral deep brain stimulation of the subthalamic nucleus for Parkinson disease. J Neurosurg 106:626–632. https://doi.org/10.3171/jns.2007.106.4.626
Article
PubMed
Google Scholar
Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86:353–387. https://doi.org/10.1016/S0306-4522(98)00004-9
CAS
Article
PubMed
Google Scholar
Stein E, Bar-Gad I (2013) Beta oscillations in the cortico-basal ganglia loop during parkinsonism. Exp Neurol 245:52–59. https://doi.org/10.1016/j.expneurol.2012.07.023
Article
PubMed
Google Scholar
Stoffers D, Bosboom JLW, Deijen JB, Wolters EC, Berendse HW, Stam CJ (2007) Slowing of oscillatory brain activity is a stable characteristic of Parkinson’s disease without dementia. Brain 130:1847–1860
CAS
Article
PubMed
Google Scholar
Stoffers D, Bosboom JLW, Deijen JB, Wolters EC, Stam CJ, Berendse HW (2008) Increased cortico-cortical functional connectivity in early-stage Parkinson’s disease: an MEG study. Neuroimage 41:212–222. https://doi.org/10.1016/j.neuroimage.2008.02.027
CAS
Article
PubMed
Google Scholar
Voytek B, Canolty RT, Shestyuk A, Crone NE, Parvizi J, Knight RT (2010) Shifts in gamma phase-amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2010.00191
Article
PubMed
PubMed Central
Google Scholar
Williams D (2002) Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain 125:1558–1569. https://doi.org/10.1093/brain/awf156
Article
PubMed
Google Scholar
Zavala B, Brittain JS, Jenkinson N, Ashkan K, Foltynie T, Limousin P et al (2013) Subthalamic nucleus local field potential activity during the eriksen flanker task reveals a novel role for theta phase during conflict monitoring. J Neurosci 33:14758–14766. https://doi.org/10.1523/JNEUROSCI.1036-13.2013
CAS
Article
PubMed
PubMed Central
Google Scholar
Zavala BA, Tan H, Little S, Ashkan K, Hariz M, Foltynie T et al (2014) Midline frontal cortex low-frequency activity drives subthalamic nucleus oscillations during conflict. J Neurosci 34:7322–7333. https://doi.org/10.1523/JNEUROSCI.1169-14.2014
CAS
Article
PubMed
PubMed Central
Google Scholar
Zavala B, Damera S, Dong JW, Lungu C, Brown P, Zaghloul KA (2015) Human subthalamic nucleus theta and beta oscillations entrain neuronal firing during sensorimotor conflict. Cereb Cortex 27:496–508. https://doi.org/10.1093/cercor/bhv244
Article
PubMed Central
Google Scholar
Zavala B, Tan H, Ashkan K, Foltynie T, Limousin P, Zrinzo L et al (2016) Human subthalamic nucleus-medial frontal cortex theta phase coherence is involved in conflict and error related cortical monitoring. Neuroimage 137:178–187. https://doi.org/10.1016/j.neuroimage.2016.05.031
Article
PubMed
Google Scholar