Allen EA, Damaraju E, Plis SM et al (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24:663–676
PubMed
Google Scholar
Andrews-Hanna JR, Reidler JS, Sepulcre J et al (2010) Functional-anatomic fractionation of the brain’s default network. Neuron 65:550–562
CAS
PubMed
PubMed Central
Google Scholar
Andrews-Hanna JR, Smallwood J, Spreng RN (2014) The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann N Y Acad Sci 1316:29–52
PubMed
PubMed Central
Google Scholar
Bar M, Aminoff E, Mason M, Fenske M (2007) The units of thought. Hippocampus 17:420–428
PubMed
Google Scholar
Barrett LF, Satpute AB (2013) Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain. Curr Opin Neurobiol. 23:361–372
CAS
PubMed
PubMed Central
Google Scholar
Bassett DS, Sporns O (2017) Network neuroscience. Nat Neurosci 20:353–364
CAS
PubMed
PubMed Central
Google Scholar
Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B 360:1001–1013
Google Scholar
Benoit RG, Schacter DL (2015) Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation. Neuropsychologia 75:450–457
PubMed
PubMed Central
Google Scholar
Betzel RF, Bassett DS (2017) Multi-scale brain networks. Neuroimage 160:73–83
PubMed
Google Scholar
Bijsterbosch JD, Woolrich MW, Glasser MF et al (2018) The relationship between spatial configuration and functional connectivity of brain regions. eLife. https://doi.org/10.7554/eLife.32992
Article
PubMed
PubMed Central
Google Scholar
Binder JR, Desai RH, Graves WW, Conant LL (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19:2767–2796
PubMed
PubMed Central
Google Scholar
Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541
CAS
PubMed
Google Scholar
Bolt T, Nomi JS, Rubinov M, Uddin LQ (2017a) Correspondence between evoked and intrinsic functional brain network configurations. Hum Brain Mapp 38:1992–2007
PubMed
PubMed Central
Google Scholar
Bolt T, Nomi JS, Yeo BTT, Uddin LQ (2017b) Data-Driven extraction of a nested model of human brain function. J Neurosci 37:7263–7277
CAS
PubMed
PubMed Central
Google Scholar
Bolt T, Nomi JS, Bainter SA et al (2019) The situation or the person? Individual and task-evoked differences in BOLD activity. Hum Brain Mapp 40:2943–2954
PubMed
PubMed Central
Google Scholar
Braga RM, Buckner RL (2017) Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95:457–471.e5
CAS
PubMed
PubMed Central
Google Scholar
Braga RM, Van Dijk KRA, Polimeni JR et al (2019) Parallel distributed networks resolved at high resolution reveal close juxtaposition of distinct regions. J Neurophysiol 121:1513–1534
PubMed
PubMed Central
Google Scholar
Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38
PubMed
Google Scholar
Buckner RL, Krienen FM, Castellanos A et al (2011) The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 106:2322–2345
PubMed
PubMed Central
Google Scholar
Chang C, Glover GH (2010) Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 50:81–98
PubMed
Google Scholar
Choi EY, Yeo BTT, Buckner RL (2012) The organization of the human striatum estimated by intrinsic functional connectivity. J Neurophysiol 108:2242–2263
PubMed
PubMed Central
Google Scholar
Chong M, Bhushan C, Joshi AA et al (2017) Individual parcellation of resting fMRI with a group functional connectivity prior. Neuroimage 156:87–100
CAS
PubMed
Google Scholar
Christoff K, Irving ZC, Fox KCR et al (2016) Mind-wandering as spontaneous thought: a dynamic framework. Nat Rev Neurosci 17:718–731
CAS
PubMed
Google Scholar
Ciric R, Nomi JS, Uddin LQ, Satpute AB (2017) Contextual connectivity: a framework for understanding the intrinsic dynamic architecture of large-scale functional brain networks. Sci Rep 7:6537
PubMed
PubMed Central
Google Scholar
Cole MW, Reynolds JR, Power JD et al (2013) Multi-task connectivity reveals flexible hubs for adaptive task control. Nat Neurosci 16:1348–1355
CAS
PubMed
PubMed Central
Google Scholar
Cole MW, Bassett DS, Power JD et al (2014) Intrinsic and task-evoked network architectures of the human brain. Neuron 83:238–251
CAS
PubMed
PubMed Central
Google Scholar
Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192–205
CAS
PubMed
Google Scholar
Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215
CAS
PubMed
Google Scholar
Corbetta M, Shulman GL (2011) Spatial neglect and attention networks. Annu Rev Neurosci 34:569–599
CAS
PubMed
PubMed Central
Google Scholar
Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58:306–324
CAS
PubMed
PubMed Central
Google Scholar
Cui Z, Li H, Xia CH, et al (2019) Individual variation in control network topography supports executive function in youth
Damoiseaux JS, Rombouts SA, Barkhof F et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853
CAS
PubMed
PubMed Central
Google Scholar
De Luca M, Beckmann CF, De Stefano N et al (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29:1359–1367
PubMed
Google Scholar
Dixon ML, Andrews-Hanna JR, Spreng RN et al (2017) Interactions between the default network and dorsal attention network vary across default subsystems, time, and cognitive states. Neuroimage 147:632–649
PubMed
Google Scholar
Dixon ML, De La Vega A, Mills C et al (2018) Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proc Natl Acad Sci USA 115(7):E1598–E1607
CAS
PubMed
PubMed Central
Google Scholar
Dohmatob E, Dumas G, Bzdok D (2018) Dark control: towards a unified account of default mode function by Markov decision processes
Dosenbach NU, Fair DA, Miezin FM et al (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA 104:11073–11078
CAS
PubMed
PubMed Central
Google Scholar
Dosenbach NU, Fair DA, Cohen AL et al (2008) A dual-networks architecture of top-down control. Trends Cogn Sci 12:99–105
PubMed
PubMed Central
Google Scholar
Doucet GE, Lee WH, Frangou S (2019) Evaluation of the spatial variability in the major resting-state networks across human brain functional atlases. Hum Brain Mapp 40:4577–4587
PubMed
PubMed Central
Google Scholar
Duncan J (2010) The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn Sci 14:172–179
PubMed
Google Scholar
Eickhoff SB, Constable RT, Yeo BTT (2018a) Topographic organization of the cerebral cortex and brain cartography. Neuroimage 170:332–347
PubMed
Google Scholar
Eickhoff SB, Yeo BTT, Genon S (2018b) Imaging-based parcellations of the human brain. Nat Rev Neurosci 19:672–686
CAS
PubMed
Google Scholar
Farrant K, Uddin LQ (2015) Asymmetric development of dorsal and ventral attention networks in the human brain. Dev Cogn Neurosci 12:165–174
PubMed
PubMed Central
Google Scholar
Fedorenko E, Duncan J, Kanwisher N (2013) Broad domain generality in focal regions of frontal and parietal cortex. Proc Natl Acad Sci USA 110:16616–16621
CAS
PubMed
PubMed Central
Google Scholar
Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47
CAS
PubMed
Google Scholar
Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711
CAS
PubMed
Google Scholar
Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678
CAS
PubMed
PubMed Central
Google Scholar
Fox MD, Corbetta M, Snyder AZ et al (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA 103:10046–10051
CAS
PubMed
PubMed Central
Google Scholar
Friston K (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2:56–78
Google Scholar
Glasser MF, Coalson TS, Robinson EC et al (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171–178
CAS
PubMed
PubMed Central
Google Scholar
Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25
CAS
PubMed
Google Scholar
Gordon EM, Laumann TO, Adeyemo B et al (2017a) Individual-specific features of brain systems identified with resting state functional correlations. NeuroImage 146:918–939
PubMed
Google Scholar
Gordon EM, Laumann TO, Adeyemo B, Petersen SE (2017b) Individual variability of the system-level organization of the human brain. Cereb Cortex 27:386–399
PubMed
Google Scholar
Gordon EM, Laumann TO, Gilmore AW et al (2017c) Precision functional mapping of individual human brains. Neuron 95:791–807.e7
CAS
PubMed
PubMed Central
Google Scholar
Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258
CAS
PubMed
Google Scholar
Harrison SJ, Woolrich MW, Robinson EC et al (2015) Large-scale probabilistic functional modes from resting state fMRI. Neuroimage 109:217–231
PubMed
Google Scholar
Haxby JV, Horwitz B, Ungerleider LG et al (1994) The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. J Neurosci 14:6336–6353
CAS
PubMed
PubMed Central
Google Scholar
Hayama HR, Vilberg KL, Rugg MD (2012) Overlap between the neural correlates of cued recall and source memory: evidence for a generic recollection network? J Cogn Neurosci 24:1127–1137
PubMed
PubMed Central
Google Scholar
Hindriks R, Adhikari MH, Murayama Y et al (2016) Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? Neuroimage 127:242–256
CAS
PubMed
Google Scholar
Hugdahl K, Raichle ME, Mitra A, Specht K (2015) On the existence of a generalized non-specific task-dependent network. Front Hum Neurosci 9:430
PubMed
PubMed Central
Google Scholar
Hutchison RM, Womelsdorf T, Allen EA et al (2013) Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80:360–378
PubMed
Google Scholar
Ji JL, Spronk M, Kulkarni K et al (2019) Mapping the human brain’s cortical-subcortical functional network organization. Neuroimage 185:35–57
PubMed
Google Scholar
Kam JWY, Lin JJ, Solbakk A-K et al (2019) Default network and frontoparietal control network theta connectivity supports internal attention. Nat Hum Behav. https://doi.org/10.1038/s41562-019-0717-0
Article
PubMed
Google Scholar
Kennedy DP, Adolphs R (2012) The social brain in psychiatric and neurological disorders. Trends Cogn Sci 16:559–572
PubMed
PubMed Central
Google Scholar
Kiviniemi V, Starck T, Remes J et al (2009) Functional segmentation of the brain cortex using high model order group PICA. Hum Brain Mapp 30:3865–3886
PubMed
PubMed Central
Google Scholar
Kong R, Li J, Orban C et al (2019) Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion. Cereb Cortex 29:2533–2551
PubMed
Google Scholar
Krienen FM, Yeo BTT, Buckner RL (2014) Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture. Philos Trans R Soc B 369:20130526
Google Scholar
Kucyi A, Hodaie M, Davis KD (2012) Lateralization in intrinsic functional connectivity of the temporoparietal junction with salience- and attention-related brain networks. J Neurophysiol 108:3382–3392
PubMed
Google Scholar
Laird AR, Fox PM, Eickhoff SB et al (2011) Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci 23:4022–4037
PubMed
PubMed Central
Google Scholar
Laumann TO, Gordon EM, Adeyemo B et al (2015) Functional system and areal organization of a highly sampled individual human brain. Neuron 87:657–670
CAS
PubMed
PubMed Central
Google Scholar
Laumann TO, Snyder AZ, Mitra A et al (2017) On the stability of BOLD fMRI correlations. Cereb Cortex 27:4719–4732
PubMed
Google Scholar
Li J, Bolt T, Bzdok D et al (2019a) Topography and behavioral relevance of the global signal in the human brain. Sci Rep 9:14286
PubMed
PubMed Central
Google Scholar
Li M, Wang D, Ren J et al (2019b) Performing group-level functional image analyses based on homologous functional regions mapped in individuals. PLoS Biol 17:e2007032
PubMed
PubMed Central
Google Scholar
Liégeois R, Laumann TO, Snyder AZ et al (2017) Interpreting temporal fluctuations in resting-state functional connectivity MRI. Neuroimage 163:437–455
PubMed
Google Scholar
Lu J, Liu H, Zhang M et al (2011) Focal pontine lesions provide evidence that intrinsic functional connectivity reflects polysynaptic anatomical pathways. J Neurosci 31:15065–15071
CAS
PubMed
PubMed Central
Google Scholar
Lurie D, Kessler D, Bassett D et al (2018) On the nature of resting fMRI and time-varying functional connectivity
Mar RA (2004) The neuropsychology of narrative: story comprehension, story production and their interrelation. Neuropsychologia 42:1414–1434
PubMed
Google Scholar
Mar RA (2011) The neural bases of social cognition and story comprehension. Annu Rev Psychol 62:103–134
PubMed
Google Scholar
Margulies DS, Ghosh SS, Goulas A et al (2016) Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci USA 113:12574–12579
CAS
PubMed
PubMed Central
Google Scholar
McIntosh AR (2004) Contexts and catalysts: a resolution of the localization and integration of function in the brain. Neuroinformatics 2:175–182
PubMed
Google Scholar
Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214:655–667
PubMed
PubMed Central
Google Scholar
Mesulam MM (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28:597–613
CAS
PubMed
Google Scholar
Murphy AC, Bertolero MA, Papadopoulos L et al (2019) Multiscale and multimodal network dynamics underpinning working memory
Mwilambwe-Tshilobo L, Ge T, Chong M et al (2019) Loneliness and meaning in life are reflected in the intrinsic network architecture of the brain. Soc Cogn Affect Neurosci 14:423–433
PubMed
PubMed Central
Google Scholar
Ngo GH, Eickhoff SB, Nguyen M et al (2019) Beyond consensus: embracing heterogeneity in curated neuroimaging meta-analysis. Neuroimage 200:142–158
PubMed
Google Scholar
Nichols TE, Das S, Eickhoff SB et al (2017) Best practices in data analysis and sharing in neuroimaging using MRI. Nat Neurosci 20:299–303
CAS
PubMed
PubMed Central
Google Scholar
Niendam TA, Laird AR, Ray KL et al (2012) Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn Affect Behav Neurosci 12:241–268
PubMed
PubMed Central
Google Scholar
Nomi JS, Farrant K, Damaraju E et al (2016) Dynamic functional network connectivity reveals unique and overlapping profiles of insula subdivisions. Hum Brain Mapp 37:1770–1787
PubMed
PubMed Central
Google Scholar
Nomi JS, Schettini E, Broce I et al (2018) Structural connections of functionally defined human insular subdivisions. Cereb Cortex 28:3445–3456
CAS
PubMed
Google Scholar
Pessoa L (2014) Understanding brain networks and brain organization. Phys Life Rev 11:460–461
Google Scholar
Poldrack RA, Kittur A, Kalar D et al (2011) The cognitive atlas: toward a knowledge foundation for cognitive neuroscience. Front Neuroinformatics 5:17
Google Scholar
Power JD, Cohen AL, Nelson SM et al (2011) Functional network organization of the human brain. Neuron 72:665–678
CAS
PubMed
PubMed Central
Google Scholar
Preti MG, Van De Ville D (2017) Dynamics of functional connectivity at high spatial resolution reveal long-range interactions and fine-scale organization. Sci Rep 7
Raichle ME, MacLeod AM, Snyder AZ et al (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682
CAS
PubMed
PubMed Central
Google Scholar
Ralph MAL, Lambon Ralph MA, Jefferies E et al (2017) The neural and computational bases of semantic cognition. Nat Rev Neurosci 18:42–55
CAS
PubMed
Google Scholar
Ray KL, McKay DR, Fox PM et al (2013) ICA model order selection of task co-activation networks. Front Neurosci 7:237
PubMed
PubMed Central
Google Scholar
Reid AT, Headley DB, Mill RD et al (2019) Advancing functional connectivity research from association to causation. Nat Neurosci 22:1751–1760
CAS
PubMed
PubMed Central
Google Scholar
Roy M, Shohamy D, Wager TD (2012) Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends Cogn Sci 16:147–156
PubMed
PubMed Central
Google Scholar
Rueter AR, Abram SV, MacDonald AW 3rd et al (2018) The goal priority network as a neural substrate of conscientiousness. Hum Brain Mapp 39:3574–3585
PubMed
PubMed Central
Google Scholar
Salehi M, Karbasi A, Shen X et al (2018) An exemplar-based approach to individualized parcellation reveals the need for sex specific functional networks. Neuroimage 170:54–67
PubMed
Google Scholar
Schacter DL, Addis DR, Hassabis D et al (2012) The future of memory: remembering, imagining, and the brain. Neuron 76:677–694
CAS
PubMed
Google Scholar
Seeley WW, Menon V, Schatzberg AF et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356
CAS
PubMed
PubMed Central
Google Scholar
Seitzman BA, Gratton C, Laumann TO et al (2019) Trait-like variants in human functional brain networks. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1902932116
Article
PubMed
PubMed Central
Google Scholar
Sejnowski TJ, Koch C, Churchland PS (1988) Computational neuroscience. Science 241:1299–1306
CAS
PubMed
Google Scholar
Shulman GL, Fiez JA, Corbetta M et al (1997) Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 9:648–663
CAS
PubMed
Google Scholar
Smith SM, Fox PT, Miller KL et al (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045
CAS
PubMed
PubMed Central
Google Scholar
Spreng RN (2012) The fallacy of a “task-negative” network. Front Psychol 3:145
PubMed
PubMed Central
Google Scholar
Spreng RN, Andrews-Hanna JR (2015) The default network and social cognition. Brain Mapp 3:165–169
Google Scholar
Spreng RN, Mar RA, Kim AS (2009) The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J Cogn Neurosci 21:489–510
PubMed
Google Scholar
Spreng RN, Stevens WD, Chamberlain JP et al (2010) Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage 53:303–317
PubMed
Google Scholar
Spreng RN, Schacter DL (2012) Default network modulation and large-scale network interactivity in healthy young and old adults. Cereb Cortex 22:2610–2621
PubMed
Google Scholar
Spreng RN, Sepulcre J, Turner GR et al (2013) Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J Cogn Neurosci 25:74–86
PubMed
Google Scholar
Spreng RN, DuPre E, Selarka D et al (2014) Goal-congruent default network activity facilitates cognitive control. J Neurosci 34:14108–14114
CAS
PubMed
PubMed Central
Google Scholar
Spunt RP, Lieberman MD (2012) Dissociating modality-specific and supramodal neural systems for action understanding. J Neurosci 32:3575–3583
CAS
PubMed
PubMed Central
Google Scholar
Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA 105:12569–12574
CAS
PubMed
PubMed Central
Google Scholar
Stevens WD, Tessler MH et al (2015) Functional connectivity constrains the category-related organization of human ventral occipitotemporal cortex. Hum Brain Mapp 36:2187–2206
PubMed
PubMed Central
Google Scholar
Stevens WD, Kravitz DJ et al (2017) Privileged functional connectivity between the visual word form area and the language system. J Neurosci 37:5288–5297
CAS
PubMed
PubMed Central
Google Scholar
Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Theime, New York
Google Scholar
Tamber-Rosenau BJ, Asplund CL, Marois R (2018) Functional dissociation of the inferior frontal junction from the dorsal attention network in top-down attentional control. J Neurophysiol 120:2498–2512
PubMed
PubMed Central
Google Scholar
Thakral PP, Wang TH, Rugg MD (2017) Decoding the content of recollection within the core recollection network and beyond. Cortex 91:101–113
PubMed
Google Scholar
Toro R, Fox PT, Paus T (2008) Functional coactivation map of the human brain. Cereb Cortex 18:2553–2559
PubMed
PubMed Central
Google Scholar
Turner JA, Laird AR (2012) The cognitive paradigm ontology: design and application. Neuroinformatics 10:57–66
PubMed
PubMed Central
Google Scholar
Uddin LQ (2014) Dynamic connectivity and dynamic affiliation. Comment on “Understanding brain networks and brain organization” by L. Pessoa. Phys Life Rev 11:460–461
PubMed
PubMed Central
Google Scholar
Uddin LQ (2015) Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci 16:55–61
CAS
PubMed
Google Scholar
Uddin LQ (2016) Salience network of the human brain. Academic Press, Cambridge
Google Scholar
Uddin LQ, Iacoboni M, Lange C, Keenan JP (2007) The self and social cognition: the role of cortical midline structures and mirror neurons. Trends Cogn Sci 11:153–157
PubMed
Google Scholar
Uddin LQ, Kinnison J, Pessoa L, Anderson ML (2014) Beyond the tripartite cognition-emotion-interoception model of the human insular cortex. J Cogn Neurosci 26:16–27
PubMed
Google Scholar
Ungerleider LG, Haxby JV (1994) “What”and “where”in the human brain. Curr Opin Neurobiol 4:157–165
CAS
PubMed
Google Scholar
Urchs S, Armoza J, Moreau C et al (2019) MIST: a multi-resolution parcellation of functional brain networks. MNI Open Res
van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786
PubMed
PubMed Central
Google Scholar
Van Essen DC, Glasser MF (2018) Parcellating cerebral cortex: how invasive animal studies inform noninvasive mapmaking in humans. Neuron 99:640–663
PubMed
PubMed Central
Google Scholar
Van Essen DC, Smith SM, Barch DM et al (2013) The WU-Minn human connectome project: an overview. Neuroimage 80:62–79
PubMed
Google Scholar
Van Overwalle F, Baetens K (2009) Understanding others’ actions and goals by mirror and mentalizing systems: a meta-analysis. Neuroimage 48:564–584
PubMed
Google Scholar
Vincent JL, Kahn I, Snyder AZ et al (2008) Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol 100:3328–3342
PubMed
PubMed Central
Google Scholar
Wang D, Buckner RL, Fox MD et al (2015) Parcellating cortical functional networks in individuals. Nat Neurosci 18:1853–1860
CAS
PubMed
PubMed Central
Google Scholar
Wig GS, Schlaggar BL, Petersen SE (2011) Concepts and principles in the analysis of brain networks. Ann N Y Acad Sci 1224:126–146
PubMed
Google Scholar
Wilk HA, Ezekiel F, Morton JB (2012) Brain regions associated with moment-to-moment adjustments in control and stable task-set maintenance. Neuroimage 59:1960–1967
PubMed
Google Scholar
Yeo BT, Krienen FM, Sepulcre J et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165
PubMed
Google Scholar
Yeo BTT, Krienen FM, Eickhoff SB, Yaakub SN, Fox PT, Buckner RL, Asplund CL, Chee MWL (2016) Functional specialization and flexibility in human association cortex. Cereb Cortex 25:3654–3672
Google Scholar
Zaki J, Wager TD, Singer T et al (2016) The anatomy of suffering: understanding the relationship between nociceptive and empathic pain. Trends Cogn Sci 20:249–259
PubMed
PubMed Central
Google Scholar
Zhou Y, Zhao L, Zhou N et al (2019) Predictive big data analytics using the UK Biobank data. Sci Rep 9:6012
PubMed
PubMed Central
Google Scholar