Statistical Significance Assessment of Phase Synchrony in the Presence of Background Couplings: An ECoG Study

Abstract

Statistical significance testing is a necessary step in connectivity analysis. Several statistical test methods have been employed to assess the significance of functional connectivity, but the performance of these methods has not been thoroughly evaluated. In addition, the effects of the intrinsic brain connectivity and background couplings on performance of statistical test methods in task-based studies have not been investigated yet. The background couplings may exist independent of cognitive state and can be observed on both pre- and post-stimulus time intervals. The background couplings may be falsely detected by a statistical test as task-related connections, which can mislead interpretations of the task-related functional networks. The aim of this study was to investigate the relative performance of four commonly used non-parametric statistical test methods—surrogate, demeaned surrogate, bootstrap resampling, and Monte Carlo permutation methods—in the presence of background couplings and noise, with different signal-to-noise ratios (SNRs). Using simulated electrocorticographic (ECoG) datasets and phase locking value (PLV) as a measure of functional connectivity, we evaluated the performances of the statistical test methods utilizing sensitivity, specificity, accuracy, and receiver operating curve (ROC) analysis. Furthermore, we calculated optimal p values for each statistical test method using the ROC analysis, and found that the optimal p values were increased by decreasing the SNR. We also found that the optimal p value of the bootstrap resampling was greater than that of other methods. Our results from the simulation datasets and a real ECoG dataset, as an illustrative case report, revealed that the bootstrap resampling is the most efficient non-parametric statistical test for identifying the significant PLV of ECoG data, especially in the presence of background couplings.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Ashtari M, Lencz T, Zuffante P, Bilder R, Clarke T, Diamond A et al (2004) Left middle temporal gyrus activation during a phonemic discrimination task. NeuroReport 15:389–393

    Article  PubMed  Google Scholar 

  2. Astolfi L, Fallani FDV, Cincotti F, Mattia D, Marciani M, Salinari S et al (2009) Estimation of effective and functional cortical connectivity from neuroelectric and hemodynamic recordings. IEEE Trans Neural Syst Rehabil Eng 17:224–233

    Article  PubMed  Google Scholar 

  3. Babajani-Feremi A, Holder CM, Narayana S, Fulton SP, Choudhri AF, Boop FA et al (2018a) Predicting postoperative language outcome using presurgical fMRI, MEG, TMS, and high gamma ECoG. Clin Neurophysiol 129:560–571

    Article  PubMed  Google Scholar 

  4. Babajani-Feremi A, Noorizadeh N, Mudigoudar B, Wheless JW (2018b) Predicting seizure outcome of vagus nerve stimulation using MEG-based network topology. Neuroimage Clin 19:990–999

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barbey AK (2018) Network neuroscience theory of human intelligence. Trends Cogn Sci 22:8–20

    Article  PubMed  Google Scholar 

  6. Bastos AM, Schoffelen J-M (2016) A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front Syst Neurosci 9:175

    Article  PubMed  PubMed Central  Google Scholar 

  7. Binney RJ, Embleton KV, Jefferies E, Parker GJ, Ralph MA (2010) The ventral and inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: evidence from a novel direct comparison of distortion-corrected fMRI, rTMS, and semantic dementia. Cereb Cortex 20:2728–2738

    Article  PubMed  Google Scholar 

  8. Chen Z, Caprihan A, Damaraju E, Rachakonda S, Calhoun V (2018) Functional brain connectivity in resting-state fMRI using phase and magnitude data. J Neurosci Methods 293:299–309

    Article  PubMed  Google Scholar 

  9. Cohen MX (2015) Effects of time lag and frequency matching on phase-based connectivity. J Neurosci Methods 250:137–146

    Article  PubMed  Google Scholar 

  10. Cohen JR (2017) The behavioral and cognitive relevance of time-varying, dynamic changes in functional connectivity. NeuroImage 180:515–525

    Article  PubMed  Google Scholar 

  11. Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE (2014) Intrinsic and task-evoked network architectures of the human brain. Neuron 83:238–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dimitriadis SI, Zouridakis G, Rezaie R, Babajani-Feremi A, Papanicolaou AC (2015) Functional connectivity changes detected with magnetoencephalography after mild traumatic brain injury. Neuroimage Clin 9:519–531

    Article  PubMed  PubMed Central  Google Scholar 

  13. Efron B (1982) The jackknife, the bootstrap, and other resampling plans, vol 38. SIAM, Philadelphia

    Book  Google Scholar 

  14. Elahian B, Yeasin M, Mudigoudar B, Wheless JW, Babajani-Feremi A (2017) Identifying seizure onset zone from electrocorticographic recordings: a machine learning approach based on phase locking value. Seizure 51:35–42

    Article  PubMed  Google Scholar 

  15. Flinker A, Korzeniewska A, Shestyuk AY, Franaszczuk PJ, Dronkers NF, Knight RT et al (2015) Redefining the role of Broca’s area in speech. Proc Natl Acad Sci 112:2871–2875

    Article  CAS  PubMed  Google Scholar 

  16. Fox KCR, Foster BL, Kucyi A, Daitch AL, Parvizi J (2018) Intracranial electrophysiology of the human default network. Trends Cogn Sci 22:307–324

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480

    Article  PubMed  Google Scholar 

  18. Gordon SM, Franaszczuk PJ, Hairston WD, Vindiola M, McDowell K (2013) Comparing parametric and nonparametric methods for detecting phase synchronization in EEG. J Neurosci Methods 212:247–258

    Article  CAS  PubMed  Google Scholar 

  19. Greenblatt RE, Pflieger ME, Ossadtchi AE (2012) Connectivity measures applied to human brain electrophysiological data. J Neurosci Methods 207:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guthrie D, Buchwald JS (1991) Significance testing of difference potentials. Psychophysiology 28:240–244

    Article  CAS  PubMed  Google Scholar 

  21. Hagiwara K, Ogata K, Okamoto T, Uehara T, Hironaga N, Shigeto H et al (2014) Age-related changes across the primary and secondary somatosensory areas: an analysis of neuromagnetic oscillatory activities. Clin Neurophysiol 125:1021–1029

    Article  PubMed  Google Scholar 

  22. He BJ, Zempel JM, Snyder AZ, Raichle ME (2010) The temporal structures and functional significance of scale-free brain activity. Neuron 66:353–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8:393

    Article  CAS  Google Scholar 

  24. Hope TMH, Price CJ (2016) Why the left posterior inferior temporal lobe is needed for word finding. Brain 139:2823–2826

    Article  PubMed  Google Scholar 

  25. Hramov AE, Koronovskii AA, Kurovskaya MK, Moskalenko OI (2005) Synchronization of spectral components and its regularities in chaotic dynamical systems. Phys Rev E Stat Nonlinear Soft Matter Phys 71:056204

    Article  CAS  Google Scholar 

  26. Koutsoukos E, Maillis A, Papageorgiou C, Gatzonis S, Stefanis C, Angelopoulos E (2015) The persistent and broadly distributed EEG synchronization might inhibit the normal processing capability of the human brain. Neurosci Lett 609:137–141

    Article  CAS  PubMed  Google Scholar 

  27. Krienen FM, Yeo BT, Buckner RL (2014) Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture. Philos Trans R Soc Lond B Biol Sci 369:20130526

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kucyi A, Schrouff J, Bickel S, Foster BL, Shine JM, Parvizi J (2018) Intracranial electrophysiology reveals reproducible intrinsic functional connectivity within human brain networks. J Neurosci 38:4230–4242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lachaux J, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. ma.utexas.edu

  30. Liebenthal E, Binder JR, Spitzer SM, Possing ET, Medler DA (2005) Neural substrates of phonemic perception. Cereb Cortex 15:1621–1631

    Article  PubMed  Google Scholar 

  31. Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 164:177–190

    Article  PubMed  Google Scholar 

  32. Micheli C, Kaping D, Westendorff S, Valiante TA, Womelsdorf T (2015) Inferior-frontal cortex phase synchronizes with the temporal–parietal junction prior to successful change detection. NeuroImage 119:417–431

    Article  PubMed  Google Scholar 

  33. Miller KJ, Sorensen LB, Ojemann JG, den Nijs M (2009) Power-law scaling in the brain surface electric potential. PLoS Comput Biol 5:e1000609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nobre AC, Allison T, McCarthy G (1994) Word recognition in the human inferior temporal lobe. Nature 372:260–263

    Article  CAS  PubMed  Google Scholar 

  35. Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115:2292–2307

    Article  PubMed  Google Scholar 

  36. Nolte G, Ziehe A, Nikulin VV, Schlögl A, Krämer N, Brismar T et al (2008) Robustly estimating the flow direction of information in complex physical systems. Phys Rev Lett 100:234101

    Article  CAS  PubMed  Google Scholar 

  37. Phillips JM, Vinck M, Everling S, Womelsdorf T (2014) A long-range fronto-parietal 5- to 10-Hz network predicts “top-down” controlled guidance in a task-switch paradigm. Cereb Cortex 24:1996–2008

    Article  PubMed  Google Scholar 

  38. Porcaro C, Coppola G, Pierelli F, Seri S, Di Lorenzo G, Tomasevic L et al (2013) Multiple frequency functional connectivity in the hand somatosensory network: an EEG study. Clin Neurophysiol 124:1216–1224

    Article  PubMed  Google Scholar 

  39. Rimol LM, Specht K, Hugdahl K (2006) Controlling for individual differences in fMRI brain activation to tones, syllables, and words. Neuroimage 30:554–562

    Article  PubMed  Google Scholar 

  40. Sadaghiani S, Poline J-B, Kleinschmidt A, D’Esposito M (2015) Ongoing dynamics in large-scale functional connectivity predict perception. Proc Natl Acad Sci USA 112:8463–8468

    Article  CAS  PubMed  Google Scholar 

  41. Sekihara K, Sahani M, Nagarajan S (2004) Bootstrap-based statistical thresholding for MEG source reconstruction images. In: 26th annual international conference of the IEEE on engineering in medicine and biology society, 2004. IEMBS’04, pp 1018–1021

  42. Slepian D (1978) Prolate spheroidal wave functions, Fourier analysis, and uncertainty—V: the discrete case. Bell Labs Tech J 57:1371–1430

    Article  Google Scholar 

  43. Srinivasan R, Winter WR, Ding J, Nunez PL (2007) EEG and MEG coherence: measures of functional connectivity at distinct spatial scales of neocortical dynamics. J Neurosci Methods 166:41–52

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stam C, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Wiley Online Library, New York

    Google Scholar 

  45. Stephen EP, Lepage KQ, Eden UT, Brunner P, Schalk G, Brumberg JS et al (2014) Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses. Front Comput Neurosci 8:31

    Article  PubMed  PubMed Central  Google Scholar 

  46. Takahashi T, Goto T, Nobukawa S, Tanaka Y, Kikuchi M, Higashima M et al (2018) Abnormal functional connectivity of high-frequency rhythms in drug-naïve schizophrenia. Clin Neurophysiol 129:222–231

    Article  PubMed  Google Scholar 

  47. Theiler J, Eubank S, Longtin A, Galdrikian B, Doyne Farmer J (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58:77–94

    Article  Google Scholar 

  48. Tomasello R, Garagnani M, Wennekers T, Pulvermüller F (2017) Brain connections of words, perceptions and actions: a neurobiological model of spatio-temporal semantic activation in the human cortex. Neuropsychologia 98:111–129

    Article  PubMed  Google Scholar 

  49. Varela F, Lachaux J-P, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239

    Article  CAS  PubMed  Google Scholar 

  50. Vinck M, Oostenveld R, Wingerden MV, Battaglia F (2011) An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Elsevier, Amsterdam

    Book  Google Scholar 

  51. Yang H, Lu K, Lyu X, Hu F (2017) Two-way partial AUC and its properties. Stat Methods Med Res 28:184–195

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Children’s Foundation Research Institute at Le Bonheur Children’s Hospital and the Le Bonheur Associate Board, Memphis, TN.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abbas Babajani-Feremi.

Ethics declarations

Conflict of interest

None of the authors have any conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Kevin Whittingstall.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mostame, P., Moharramipour, A., Hossein-Zadeh, GA. et al. Statistical Significance Assessment of Phase Synchrony in the Presence of Background Couplings: An ECoG Study. Brain Topogr 32, 882–896 (2019). https://doi.org/10.1007/s10548-019-00718-8

Download citation

Keywords

  • Functional connectivity
  • Phase locking value (PLV)
  • Background couplings
  • Statistical test
  • Electrocorticography (ECoG)